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acompañado estos últimos años, empezando por mis compañeros de despacho Celián,
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Resumen

El interés en el desarrollo y la caracterización de motores-cohete de plasma ha cre-

cido de forma continua en los últimos años gracias a la creciente demanda por parte

de la industria espacial. En este contexto, el modelado y la simulación de motores

de plasma sin electrodos (EPTs) aśı como su prototipado y testeo es de gran im-

portancia para la comunidad cient́ıfica de la propulsión eléctrica en su empeño en

convertir este tipo de tecnoloǵıas en competidoras contra otras con mayor legado

en vuelos espaciales. Este interés en el desarrollo de EPTs se basa en el hecho de

que, en estos dispositivos, la aceleración del plasma se produce sin contacto en una

tobera magnética (MN), eliminando la necesidad de mantener electrodos expuestos

al plasma. Esta caracteŕıstica los dota de mayor simplicidad y permite que operen

con virtualmente cualquier propulsante.

La tesis que aqúı se presenta tiene como objetivo cubrir parte de la falta de

conocimiento existente en la expansión de plasma en la pluma de los motores de

plasma sin electrodos. En este sentido, una de las principales contribuciones de esta

tesis es el desarrollo de una plataforma de simulación, llamada POSETS, que utiliza

el método de Galerkin discontinuo para resolver modelos multi-fluidos de plasma

magnetizado y es lo suficientemente flexible para incluir distintos modelos para el

estudio de los múltiples fenómenos que tienen lugar en la operación estacionaria

de este tipo de dispositivos. POSETS implementa un modelo cuasi-neutro con dos

o tres especies fluidas en dos dimensiones que incluye además múltiples procesos

colisionales y el efecto de los campos magnéticos autoinducidos por el plasma tanto

en geometŕıas planas como axisimetricas.

Tras la explicación del funcionamiento de dicho software de simulación, esta

tesis estudia dos cuestiones que son consideradas de importancia en el desarrollo los

EPTs.

La primera de estas cuestiones es la expansión de plasma en una configuración

magnética novedosa llamada arco magnético y la evaluación de su viabilidad para la

generación de empuje en el contexto de la propulsión espacial. Este arco magnético

es una configuración magnética cerrada que aparece cuando se utilizan dos EPTs

ciĺındricos con polaridades opuestas, aśı como en ciertas propuestas novedosas para

la propulsión espacial. Esta configuración en arco magnético ofrece algunas posi-

bles ventajas frente a las geometŕıas ciĺındricas tal como la reducción del momento
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magnético de la aeronave. En este trabajo se examina la extracción del plasma y la

generación de empuje, aśı como el efecto de los campos magnéticos auto-inducidos en

la expansión; estos son, a diferencia con los motores ciĺındricos, de gran importancia

para el funcionamiento del dispositivo.

La segunda cuestión que se aborda es el efecto de los llamados efectos de labora-

torio. Se sabe que estos afectan al funcionamiento de los EPTs ciĺındricos aśı como

a otras tecnoloǵıas opacando el funcionamiento que estos tendŕıan en el entorno

espacial. Con el fin de determinar el impacto de estos efectos en el comportamiento

de la tobera magnética, el modelo utilizado para este estudio incluye neutros con

dos oŕıgenes; una fuente de plasma con ionización parcial y un fondo de neutros que

representa la presión residual que aparece en todos los experimentos llevados a cabo

en cámara de vaćıo. Con este modelo estudiamos la generación de empuje y el efecto

de múltiples tipos de colisiones en la expansión.

En resumen, los resultados que se presentan en esta tesis suponen un avance en

el entendimiento de la dinámica del plasma en la pluma de los EPTs. El código

POSETS ofrece una herramienta versátil para el modelado de flujos de plasma mag-

netizado. Asimismo, el análisis de la configuración en arco magnético y del papel

de las colisiones en los EPTs ampĺıan el conocimiento de la comunidad en algunos

aspectos clave para este tipo de tecnoloǵıas.
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Abstract

The interest in the development and testing of plasma thrusters has grown steadily in

the last years due to the growing demands of the space industry. In this context, the

modelling and simulation of electrodeless plasma thrusters (EPTs) as well as their

prototyping and testing is of great significance to the electric propulsion community

in its pursue to make this novel technology a contender against more established

ones. This interest in the development of EPTs stems from the fact that these devices

achieve plasma acceleration in a contactless manner in a magnetic nozzle (MN),

eliminating the need for exposed electrodes within the plasma. This characteristic

grants them apparent simplicity and the possibility to operate with virtually any

propellant.

The present thesis aims to tackle some of the gaps in the understanding of plasma

expansion in the plumes of EPTs. One of the main contributions of this thesis is

the development of a Discontinuous-Galerkin multifluid simulation platform, coined

POSETS, that allows for the solution of magnetised plasma flows and is flexible enough

to accommodate different models in order to study several different mechanisms

taking place in the steady-state operation of these devices. POSETS implements

a quasi-neutral, two- or three-fluid, two-dimensional model that includes several

collisional processes and the effect plasma-induced magnetic field in either planar or

axisymmetric geometries.

After the presentation of the workings of said simulation software, this thesis

studies two different topics which are considered significant for the development of

EPTs.

The first one is the expansion of plasma in a novel magnetic configuration so-

called magnetic-arch and the assessment of the feasibility of this configuration for

thrust generation in the context of space-propulsion. This magnetic-arch is a closed-

line magnetic configuration which appears when flying two cylindrical EPTs with

opposed polarities as well as in some novel propulsion concepts. This configuration

offers some possible advantages against cylindrical ones such as the reduction in

the magnetic moment of the spacecraft. In this work the extraction of plasma and

thrust generation are examined along with the effect of plasma-induced magnetic

fields which are, in comparison to the magnetic nozzle of a single cylindrical EPTs,

of stark relevance to the behaviour of the device.
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The second one is the effect of the so-called facility effects which are known to

affect the behaviour of cylindrical EPTs and other technologies obscuring the real in-

space operation of these devices. In order to gauge the impact of these phenomena

in the behaviour of a magnetic nozzle (MN), the model employed for this study

includes collisions with neutrals from two origins; a plasma source with imperfect

ionization and a background that represents the residual pressure existing in all

testing facilities. With this model we gauge the generation of thrust and the effect

of several collisions on the expansion.

In summary, the findings presented in this thesis advance the understanding of

plasma dynamics in the plumes of EPTs. The POSETS simulation platform offers a

versatile tool for modelling magnetised plasma flows. Additionally, the analysis of

the magnetic-arch configuration and of the role of collisions on EPT performance

broadens the knowledge of the community on some key aspects in this propulsion

technology.
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Chapter 1

Introduction

1.1 Electric Propulsion

Electric Propulsion (EP) is broadly defined as the use of electrical power to propel

spacecraft. The main advantage of electric propulsion against the more common

chemical propulsion is the virtually limitless specific energy that can be imparted

to the propellant, this energy is only limited by the power available in the space-

craft [1, 2]. This allows for a higher exhaust velocity of the propellant that can be

orders of magnitude higher than in chemical rockets where the energy used to accel-

erate the propellant is only the one stored in the chemical bonds of the propellant

used. This higher exhaust velocity allows for a higher specific impulse Isp which,

in turn, allows for higher mass efficiency and, therefore, reduced mission cost for a

needed propulsive load. Electric propulsion has become a major competitor against

its chemical counterpart for in-space propulsion duties for its higher propellant effi-

ciency, however launch vehicles are necessarily propelled with chemical thrusters due

to the high-thrust, high-power needs required to escape the vicinity of the Earth.

Broadly speaking, there are three main stages in the operation of an electric

thruster. First the propellant is heated or ionized in the case of plasma thrusters,

this stage happens usually in a so called ionization chamber. Second, the plasma is

accelerated by some of the mechanisms that will be discussed in the following and,

lastly, the plasma detaches from the thruster [3]. Several ways of ionizing the plasma

are present in today’s electric propulsion market, however, let us distinguish each

type of thruster by the acceleration mechanism, in this sense we find three main

branches:

• Electrothermal thrusters: this type of thrusters work by heating up the pro-

pellant which is subsequently accelerated by thermal expansion in a standard

de Laval nozzle. This is the case of the arcjet and the resistojet rockets [4, 5].

• Electrostatic thrusters: the thrust in this type of devices is generated by elec-
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trostatic acceleration of the plasma once it has been ionized. This is achieved

by accelerating ions through an electrostatic potential fall generated by two

electrodes. Within this category one finds one of the most common technolo-

gies, the Gridded Ion Thruster (GIT) [6, 7, 8]. Electrostatic acceleration is also

the mechanism operating in electrospray thrusters, albeit accelerating charged

liquid droplets instead of ions in a plasma.

• Electromagnetic thrusters: in this type of thrusters thrust is generated by the

Lorentz forces that exist in the magnetic interaction of the internal plasma

current and the current in a magnetic circuit. This type of acceleration is

present in multiple thrusters present in the market such as the Hall Effect

Thruster (HET). [9, 10].

The last two types of acceleration are the most commonly used in electric propul-

sion nowadays, mainly due to the prevalence of ion and Hall thrusters in today’s

propulsion landscape.

1.2 Electrodeless Plasma Thrusters

The most common EP technologies nowadays , namely the HET and GIT, require

some form of bare electrodes exposed to the plasma in order to neutralize the plasma

and/or accelerate the ion beam. Hall Effect Thrusters need a cathode both to gen-

erate the discharge and to neutralize the plasma plume downstream while GITs use

at least a cathode to neutralize the ion beam with electrons collected at the anode

to avoid spacecraft charging and in some cases an extra cathode to produce the

discharge via electron bombardment. This need for naked electrodes is one of the

most prominent limitations of these technologies for multiple reasons. First, the use

of electrodes limits the usable propellants to mainly noble gases, although iodine

fed HET have recently made their maiden flight [11] and even water fuel system

are being tested [12]. Second, the need for a cathode increases the complexity of

the overall propulsion system making the scaling to different powers difficult and,

third, the use of electrodes exposed directly to the plasma reduces considerably the

lifetime of these thrusters.

For this reasons, in the last decades, two propulsion concepts; the Helicon plasma

thruster (HPT) [13, 14] and the Electron-Cyclotron Resonance Thruster (ECRT)

[15, 16] have gained interest from the community. This type of thrusters are usu-

ally called Electrodeless Plasma Thrusters (EPTs) [17] as they do not need any

electrodes to either ionize the plasma nor accelerate it and are considered electro-

magnetic thrusters in the classification mentioned before. These two thrusters differ

mainly in the ionization process in the chamber. The first one couples a helicon
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radio-frequency wave with the plasma (mainly collisionally, although other mecha-

nisms are believed to play a role) to heat it and ionize it [18], on the other hand

the ECRT ionizes the plasma via microwaves with a frequency that matches the

electron-cyclotron resonance in the magnetic field of the ionization chamber. In

these thrusters a magnetic field is imposed externally either with the use of electro-

magnets or permanent magnets. This magnetic field has a three-fold function:

1. The magnetic field plays a crucial role in the wave propagation process. In

the case of the HPT, the magnetic field makes the plasma transparent to the

propagation of helicon waves [2] while in the ECRT the magnetic field allows

the existence of a region where electron-cyclotron resonance efficiently couples

the power carried by the a microwave to the plasma.

2. Inside the plasma chamber, which is in most cases cylindrical, the magnetic

field is almost parallel to the chamber walls, see figure 1.1. This magnetic field

reduces transport of plasma to the walls and collimates the expelled plasma

beam in a configuration that is very similar to a θ-pinch [19].

3. This plasma beam expands in a convergent-divergent magnetic field usually

named magnetic-nozzle (MN) in which electron thermal energy is converted

into ion kinetic energy via the action of an ambipolar electric field [20].

The existence of a magnetic nozzle in the external part of EPTs provides at

the same time other potential advantages such as the possibility of exerting thrust

vectoring without moving parts in a contact-less fashion by tuning the imposed

magnetic field [21].

Despite these multiple possible advantages, EPTs are usually been considered

low performing compared to more established thruster technologies. The efficiency

and specific impulse of HET are around 35−60% and 1500 s and around 60−80% and

5000 s for GIT [3]. On the other hand, most HPT and ECRT efficiencies are usually

in the range of 10% or below [22, 23, 24]. Although some of the last prototypes

have shown very promising performances with efficiencies of up to 30% in HPTs [25]

and up 40 − 50% for ECRTs [26], the performance of EPTs is hindered by several

phenomena that are yet not fully understood. These problems range from the role

of turbulence in the perpendicular anomalous transport of electrons to the coupling

of electromagnetic waves with the plasma. In addition, EPTs have some limitations

that are inherent to the cylindrical geometry of the magnetic field. To begin with as

one can observe in figure 1.1 the rear wall of the ionization chamber in these devices

is not magnetically shielded, this is, the magnetic field is quasi-perpendicular to

the chamber walls in this area, therefore plasma is lost to the rear wall decreasing

efficiency. Moreover, the magnetic nozzle of a cylindrical EPT has a dipole moment

that can couple to the geomagnetic field inducing a torque in the spacecraft and

affecting the axisymmetry of the plume [27]. Flying EPTs in opposed polarities or
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(a) Sketch of an Electron-cyclotron Res-

onance Thruster [29]

(b) Sketch of a Helicon Plasma Thruster

taken from [30]

Figure 1.1: Schematic view of the two main types of EPTs, the Electron-cyclotron

resonance thruster and the Helicon plasma thruster.

in a closed line configuration such as the magnetic arch thruster could alleviate these

problems [28].

1.3 Plasma Simulations

Experimental development of electric propulsion devices is quite constrained for

both economic and technological reasons. In-space measurements of the behaviour

of plasma thrusters are limited, therefore most of the characterization of these type

of technologies is done in vacuum chambers. However, testing in vacuum chambers

is also not ideal. To begin with, measurements are restricted to the part of the plume

closer to the thruster, second, vacuum chambers always present a small background

pressure which has been shown to affect the performance of EP devices both through

the ingestion of neutral gas in the source and the collisions between the expanding

plasma and the neutral background [31, 32, 33, 34], lastly, vacuum chambers im-

pose an equipotential surface over the interior of the chamber, this means that the

expansion is not completely free as all the points along the surface of the camber

are forced to be equipotential.

These limitations have made plasma simulation an important complement in the

study and development of plasma thrusters. Therefore multiple approaches have

been identified to tackle this problem, nowadays, the most prominent approaches to

plasma simulation are:

• Continuous-Kinetic models - Vlasov solvers.

• Particle-Kinetic models - Particle in cell (PIC) solvers.

• Hybrid Fluid-PIC models

• Full-fluid models
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Of course, the continuous-kinetic models are the most descriptive ones, how-

ever, the six dimensional (3 positions coordinates and 3 velocities) phase space

makes this type of simulations unfeasible for multidimensional problems. On the

other hand, PIC simulations model particle populations as macro-particles subject

to electromagnetic forces and moved along mesh nodes, basically PIC models solve

Boltzmann’s equation with a reduced number of degrees of freedom by discretizing

the distribution function in a finite number of macro-particles with delta-like dis-

tributions weighted by the number of particles encompassed in them [35]. Finally,

fluid models solve a simplified set of equations stemming from the moments of the

velocity distribution function. This way we can solve a set of partial differential

equations that describe the plasma in terms of macroscopic its macroscopic proper-

ties such as number density, fluid velocity or pressure[36].

Nowadays the most commonly used models are PIC, fluid and hybrid, a com-

bination of all these approaches is necessary to study EP devices as the physics of

these devices is rather complex, comprising regions in which a three dimensional

PIC treatment is unfeasible and regions in which the fluid description does not offer

an accurate depiction of the behaviour of the device. PIC simulations offer higher

precision with the backlash of computational cost. On the other hand fluid models

are penalized by the weakly-collisional regime that characterizes plasma plumes in

which we are forced to choose closures for the fluid equations which are not always

justified from the kinetic point of view [37, 38].

1.4 Thesis objectives

This work is devoted to the fluid modelling and simulation of the plumes of electron-

driven EPTs such as the helicon and the ECR thruster; other EPT concepts such

as the VASIMR that rely on hot ions to produce thrust are out of the scope of this

work. In particular, two problems of interest in space propulsion are tackled. The

first one is the acceleration and extraction of an ion beam from a closed magnetic

field line configuration called a magnetic arch which appears when operating EPTs in

opposed polarities as well as in new thruster concepts as the Magnetic Arch Thruster

in order to asses its feasibility for space propulsion purposes. The second is the

role of neutral dynamics and facility effects in the operation of standard cylindrical

magnetic nozzles. These goals con be dissected into four different objectives:

1. The development of a set of different fluid models that capture the key physics

of the expansion of plasma in closed-line magnetic arch configurations as well

as in collisional cylindrical nozzles.
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2. The development of a numerical code for the simulation of magnetized plasma

expansions that is flexible enough to handle both planar and axisymmetric

geometries as well as different models depending on the physical mechanism

that the user wishes to explore.

3. The study of plasma expansion in so-called magnetic arch topologies assessing

the extraction of the ion beam from the source the thrust production mecha-

nisms and the effect of plasma-induced magnetic fields in the expansion.

4. The study of collisional and facility effects in the expansion of plasma in cylin-

drical magnetic nozzles. Including the role of background neutrals and those

expelled by the plasma source and their effect on thrust production and effi-

ciency.

1.4.1 Thesis Outline

In order to accomplish said objectives the rest of the thesis is organized as follows:

Chapter 2 starts with a brief introduction on the derivation of fluid theory

from the Boltzmann equation. Then, the coordinate systems and magnetic

fields employed in the models are presented in order to latter develop fluid

equations for each of the different species present in the plasma. The chapter

concludes with a brief discussion on the models employed in order to evaluate

the collisional cross-sections that appear in some of the fluid equations and a

description of the Ampere equation which describes the self-induced magnetic

field of our plasma.

Chapter 3 describes the POSETS code which has been developed in the con-

text of this thesis. The code employs a Discontinuous Galerkin discretization

in order to solve the different models described in the previous chapter. The

chapter starts by introducing the Discontinuous Galerkin discretization for hy-

perbolic systems developed by Cockburn and Shu [39] by describing its weak

form as well as the choice of finite elements and the time discretization of the

problem. Afterwards, a brief comment on the shock capturing scheme of Hart-

mann and Houston [40] is introduced in order to avoid spurious oscillations

around discontinuities, then, the weak form of the Poisson equation for the

magnetic vector potential is discussed. Finally, the numerical implementation

of the code is described including the code structure and the verification it has

been subject to.

Chapter 4 shows the content of the peer-reviewed publication [41]. In said

paper the expansion of plasma in a magnetic arch is studied. First, the concept

of the magnetic arch and its appearance in space propulsion are discussed.

6



1.4. Thesis objectives

Next, we briefly discuss the model employed as their derivation was already

performed in chapter 2. The results of the β = 0 limit are then discussed

to latter examine the effect of plasma induced magnetic fields in the thrust

performance of the plume.

Chapter 5 is devoted to the study of the effect of collisions and facility effects

on the expansion of plasma in a cylindrical magnetic nozzle. The content of

this chapter is under review in a peer-reviewed journal. The chapter starts

presenting the model employed and discussing the different experimental and

numerical evidence that support the assumptions therein. After this, the dif-

ferent simulation scenarios are presented in order to then show the effect of the

different collisions in the expansion of the plasma for different neutral back-

ground pressures and source utilization efficiencies. The thrust generation and

efficiency the nozzle are discussed.

Chapter 6 gathers the main conclusions of the thesis and points out some

possible directions in which the work contained here could be continued.
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Chapter 2

Fluid Models for Magnetised

Plasma Expansions

This chapter is devoted to the presentation and development of the different fluid

models in which the rest of the work of the thesis is based. In this chapter we

explore the obtention of fluid equations from the Boltzmann equation for the velocity

distribution function. We take this as a starting point to obtain fluid models for

the different species involved in the plasma. For each species we mention the model

employed in the rest of the chapters of the thesis.

2.1 Fluid Theory of Plasmas

Boltzmann’s equation for the temporal evolution of the velocity distribution function

(VDF) over time reads:

∂f

∂t
+ v∇rf +

F

m
∇vf =

δf

δt

⃓⃓⃓⃓
coll

(2.1)

To obtain equations in terms of macroscopic fluid variables one takes the equation

above and multiplies by a function g(r,v, t) and integrates over the velocity space.

When the function g(r,v, t) = αvn this operation is usually regarded as taking the

n-th moment of the VDF. Let us first define the local density as:

n(r, t) =

∫︂
v

f(r, v, t)dv (2.2)

and the weighted average of g(r, v, t) as:

⟨g(r, t)⟩ =
∫︁
v
g(r, v, t)f(r, v, t)dv∫︁

v
f(r, v, t)dv

=
1

n(r, t)

∫︂
v

g(r, v, t)f(r, v, t)dv (2.3)
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2.1. Fluid Theory of Plasmas

Finally the fluid velocity can be defined as the average particle velocity as:

u(r, t) = ⟨v(r, t)⟩ = 1

n(r, t)

∫︂
v

vf(r, v, t)dv (2.4)

Armed with these definitions we go back to the Boltzmann equation and multiply

it by a function g(v) that represents some physical property of the particles in the

plasma and is only dependent on their velocity and integrate over the velocity space

to obtain: ∫︂
v

g∂tfdv +

∫︂
v

gv · ∇fdv +

∫︂
v

g
F

m
· ∇vfdv =

∫︂
v

g
δf

δt

⃓⃓⃓⃓
coll

dv (2.5)

The first term in equation (2.5) can be written as:∫︂
v

g∂tfdv =

∫︂
v

∂t(gf)dv −
∫︂
v

f∂tgdv (2.6)

= ∂t

∫︂
v

gfdv = ∂t(n(r, t)⟨g⟩) (2.7)

The second term can be written as:∫︂
v

gv · ∇fdv = ∇ ·
∫︂
v

fgvdv = ∇ · (n⟨gv⟩) (2.8)

Similarly, the third term in (2.5) is expanded as:∫︂
v

g
F

m
· ∇vfdv =

∫︂
v

∇v ·
Å
g
F

m
f

ã
dv −

∫︂
v

gf∇v ·
F

m
dv −

∫︂
v

f
F

m
· ∇vgdv (2.9)

= −
∫︂
v

f
F

m
· ∇vgdv = −n⟨F

m
· ∇vg⟩ (2.10)

In the second step we have used that the first integral in (2.9) is equal to a sum over

all the velocity components of three triple integrals:∑︂
i=x,y,z

∫︂∫︂∫︂ ∞

−∞
∂vi(g

Fi

m
f)dvxdvydvz. (2.11)

All these integrals end up in an evaluation of the type:ï
g
Fi

m
f

òvi=∞

vi=−∞

∫︂∫︂ ∞

−∞
dvjdvk (2.12)

with j, k ̸= i, and since no particles with infinite velocity can exist, these integrals

vanish in all cases. And also that, the second term vanishes if we assume that

∇v · F = 0, this is, if the force does not depend on its corresponding velocity

component. This is not only true for all forces not dependent on the velocity such

as electric or gravitational forces but also for the magnetic force as ∂(ϵi,j,kvjBk) = 0.

Combining the results for (2.6), (2.8) and (2.9) we obtain:

∂t(n⟨g⟩) +∇ · (n⟨gv⟩)− n⟨(F
m

· ∇vg)⟩ =
ï
δ

δt
(n⟨g⟩)

ò
coll

(2.13)

9



Chapter 2. Fluid Models for Magnetised Plasma Expansions

where the term in the right hand side denotes the volumetric rate of change to

g due to collisions. We designate (2.13) as the general transport equation. From

this equation it is straight forward to derive momenta of the VDF. Let us take for

example the zeroth order moment by choosing g(v) = v0 = 1. In this situation

we have the some clear identities such as; ⟨g⟩ = 1, ⟨gv⟩ = ⟨v⟩ = u and therefore

the zeroth order moment of the VDF is the common equation for particle number

conservation:

∂tn+∇ · (nu) =
ï
δn

δt

ò
coll

(2.14)

Had we chosen some other constant g such as a mass or a charge we would have

obtained equations for the conservation of these quantities which are formally equiv-

alent. If we take g(v) = v1 = v we obtain and assume that the particle velocity can

be decomposed in a fluid velocity and a random thermal velocity (v = u+ c):

∂t(nu) +∇ · (nuu+ n⟨cc⟩)− nF =

ï
δ(nu)

δt

ò
coll

(2.15)

Identifying ⟨cc⟩ as the pressure tensor P and we assuming our plasma is only subject

to electromagnetic forces we have:

∂t(nu) +∇ · (nuu+ nP) = n(E + v ×B) +

ï
δ(nu)

δt

ò
coll

(2.16)

In a similar fashion we can obtain the second order moment which lead to energy

conservation laws. This way we obtain the first three fluid equations for a species s

[36]:

∂tns +∇ · (nsus) = Sc (2.17)

∂t(msnSus) +∇ · (msnsusus + Ps) =

qsns(E + us ×B) + Fc (2.18)

∂t

Å
3

2
ps +

1

2
msnsu

2
s

ã
+∇ ·

ïÅ
3

2
ps +

1

2
msnsu

2
s

ã
us + qs

ò
=

−∇ · (usPs) + qsnus ·E +Qs (2.19)

Where qs represents the heat flux vector, and Sc, Fc, and Qs represent collisional

contributions to particle number density, momentum and total energy of species s

respectively. Moreover, ps = trace(Ps)/3.

This fluid formalism comes with a caveat, the closure problem. The n first fluid

equations, even in their collisionless form, have n+1 unknowns, therefore the system

itself in underdetermined. For example in equations (2.17)-(2.19) we need further

information in order to relate the heat-flux vector qs to lower moments of the VDF,

this is known as a closure relation. In near-collisionless plasmas, information for the

choice of a closure relation can come from either experimental data, for example the
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knowledge of an isothermal behaviour by some species, or from kinetic simulations

that can inform about the shape of the velocity distribution functions of the differ-

ent species. Therefore, special care must be taken while choosing a fluid closure if

one wants to obtain sensible results. Some common choices are the assumption of

a Maxwellian VDF for the species s which renders a diagonal pressure tensor and a

vanishing heat-flux vector, therefore the fluid equations become a closed, isotropic

and adiabatic five moment model; the choice of a Fourier-type closure for the heat-

flux vector for which we have an eight-moment model [42]. For collisionless but

strongly magnetised species, such as the electrons a reasonable choice could be the

Chew, Goldberger, Low model [43] where even without collisions the gas is ther-

malized by the small Larmor radius due to the strong Lorentz force, however this

happens only in the direction perpendicular to the magnetic field leading to a di-

agonal but anisotropic pressure tensor an equation for the parallel internal energy

and a closure relation for the heat-flux vector. Some of these models are employed

in both fluid and fluid-kinetic codes.

In the following we obtain simpler models employing fewer momenta of the VDF

than the ones described above exploiting the specific information we have for the

expansion of plasma in a magnetic nozzle. These models are intended to be fast and

able to give physical insight of the main dynamical behaviour of the different species

involved in the expansion, however, we must emphasize that the models described

above are more accurate at the expense of higher computational cost. The models

presented in the following sections make no assumptions on the geometry of the

model, this is, they can be adapted to either axisymmetric or planar geometry.

2.2 Two Dimensional Models

In this thesis all the models considered are quasi-neutral, this is ne = ni everywhere

in the domain. Moreover, these models are solved in two-dimensional geometries,

either planar or axisymmetric. In the planar case we define a right-handed refer-

ence frame with the plane Oxy coincident with the exit plane of the plasma source,

and the Oz axis pointing downstream. The plane under study is therefore the Oxz

plane, and in the 2D expansion the plasma is infinite and uniform in the y direction.

The plane Oyz is a symmetry plane, and thus only the upper half of the plane is

simulated. Without loss of generality, B is taken to point axially downstream in

this part of the domain. We introduce the Cartesian vector basis {1z,1x,1y} and

the magnetic vector basis {1b,1⊥,1y}, with 1∥ = B/B and 1⊥ = 1y × 1∥.

On the other hand, for the axisymmetric case we define a frame of reference

with the plane Orθ coincident with the exit plane of the plasma source, and the

11



Chapter 2. Fluid Models for Magnetised Plasma Expansions

Oz axis pointing downstream. The plane under study is therefore the Orz plane,

and all quantities are assumed to be rotationally invariant (∂θ → 0). Hence the

integration is formally two dimensional once an arbitrary azimuthal angle is chosen.

In this case, we define the cylindrical vector basis {1z,1r,1θ} and the magnetic vec-

tor basis {1∥,1⊥,1θ}, with 1⊥ = 1θ × 1b. In both cases the bases we have defined

are right-handed and orthonormal. In the following the second component of our

vector bases will be denoted with the letter r independently on the geometry of the

problem while ξ will denote the third component, this is, y and θ in planar and

axisymmetric geometries respectively.

The applied magnetic field Ba is generated by a set of ideal electric conductors

w, each carrying an electric current Iw. The arrangement of these conductors and

their electric currents is antisymmetric about the Oyz symmetry plane in the planar

case and rotationally symmetric around the Oz axis in the axisymmetric case.

In the planar case the conductors will be a set of infinite wires carrying a current

in the 1y direction and the sum of the Iw over all the wires equals zero. The magnetic

stream-function of a single wire w is given by

ψBw = −µ0Iw
2π

ln ρw, (2.20)

where ρw is the distance from the wire. Summing over the wire contributions we

obtain the stream-function ψBa of the applied field.

In contrast, in the axisymmetric case the conductor will be a single current loop

with radius RL and centered at the origin whose magnetic stream-function reads:

ψBl =
B0RL

2π

»
(RL + r)2 + z2[(2− k2)K(k2)− 2E(k2)], (2.21)

with k2 = 4RLr[(RL+ r)2+ z2]−1, B0 = Bz(0, 0) and K(m) and E(m) the complete

elliptic integrals of the first and second kind respectively [20].

The applied magnetic field can be obtained from the magnetic streamfunction

in a straightforward manner. Let us define a function ζ(r) such that ζ(r) = r in the

axisymmetric case and ζ(r) = 1 in the planar case. Then the magnetic field is given

by the magnetic streamfunction as:

∂ψ

∂z
= −ζ(r)Br,

∂ψ

∂r
= ζ(r)Bz, (2.22)

The plasma-induced magnetic field Bp has the streamfunction ψBp given by

Ampère’s equation, which reduces to a manifestly elliptic partial differential equa-

tion:

∇2ψBp = −µ0jy ≡ −β0B2
a0jy, (2.23)
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2.3. Electron Model

where jy is the out-of-plane plasma electric current and β0 = µ0/B
2
a0 is the β pa-

rameter at the centerpoint of the thruster outlet, already normalized with n0 and

Te0.

The total magnetic field B is the sum of the applied and plasma-induced ones,

with ψB = ψBa + ψBp, and

B ≡ Ba +Bp =
1

ζ(r)
∇ψB × 1ξ. (2.24)

With 1ξ the unit vector for the third dimension ξ. When β0 = 0 the plasma-induced

magnetic field Bp is negligible with respect to the applied one Ba, and the total field

coincides with the latter. Then, equation (2.23) may be dropped from the model.

Note that 1⊥ ≡ ∇ψB/(ζ(r)B) and, for any single-variable function f(ψB),

∇f =
∂f

∂1⊥
1⊥ = ζ(r)B

df

dψB

1⊥. (2.25)

2.3 Electron Model

In this section we describe the model employed for the solution of the electron fluid.

The model is based on the work by Ahedo and Merino in [20], which it extends.

The collisionless limit of this model is the one employed in chapter 4, while the case

where ionization and other collisions are taken into account is described in chapter

5.

To begin with, we start with the equations for continuity(2.17), momentum

(2.18) and energy (2.19) conservation for the electron fluid. Experiments [44]-[45]

have shown that electron thermodynamics can be well characterized by a polytropic

relation and therefore we close the equations for the electron fluid with a relation

for the temperature as Te = Te0(ne/ne0)
γe , with this assumption the equation for

the internal energy can be dropped. In addition, we will consider a drift-diffusive

model for the electron fluid based on the fact that electrons in a typical magnetic

nozzle scenario are highly sub-sonic ue ≪ ce and hence we drop the inertial terms

from the electron momentum equation. This is, in fact, equivalent to retaining only

zeroth-order Larmor radius effects.

With these assumptions, the equations for the electron fluid read:

∂tne +∇ · (neue) = Si, (2.26)

0 = − Te0

nγe−1
e0

∇(neTe) + ene∇ϕ− eneue ×B −meneνeue (2.27)

In the continuity equation (2.26) the term Si represents plasma creation by ionization

and νe represents the effective electron momentum collision frequency due to elastic

13



Chapter 2. Fluid Models for Magnetised Plasma Expansions

collisions (with ions and neutrals) and inelastic collisions (excitation, ionization).

For the moment, we dismiss the collisional contribution to the electron momentum

equation. In a latter section we will obtain the leading order corrections to the

collisionless equations in order to justify this choice.

It is useful to note that for any polytropic species the following relation holds:

1

ne

∇(neTe) =
γe

γe − 1
Te0∇

Å
ne

ne0

ãγe−1

,

and that we can write the electron velocity as function of its components in the

magnetic vector basis as:

ue = u∥e1b + u⊥e1⊥ + uξe1ξ. (2.28)

In a magnetic nozzle, electrons are strongly magnetized and therefore u⊥e ≪ u∥e, uξe
Taking all this into account we can write the conservation of momentum for electrons

as:

0 = −∇
®

γ

γ − 1

ïÅ
n

n0

ãγ−1

− 1

ò
− ϕ

´
−B(u∥e1b + u⊥e1⊥ + uξe1ξ)× 1∥. (2.29)

Which can be written in terms of the thermalized potential He

He =
γe

γe − 1

ïÅ
n

n0

ãγ−1

− 1

ò
− ϕ, (2.30)

as

0 = −∇He −B(u∥e1b + u⊥e1⊥ + uξe1ξ)× 1∥.

The projection of this equation onto its components in the magnetic vector basis

renders:

∂He

∂1∥
= 0 (2.31)

uξe =
−1

B
1⊥ · ∇He (2.32)

u⊥e = 0 (2.33)

The out-of-plane electron velocity uξe can be computed from the map of ∇He and

equation (2.25):

uξe(ψB) = − 1

B

∂He

∂1⊥
= −ζ(r)dHe

dψB

= −ζ(r)H ′
e. (2.34)

This uξe results from the sum of the diamagnetic (i.e., pressure-driven) and E ×B

drifts, which are the only first-order drifts in the problem (and indeed, they scale as
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2.3. Electron Model

1/B). The function He, its derivative H ′
e, and consequently uξe, can be computed

from the boundary conditions at z = 0 on each magnetic line. This computation

can be done a priori, i.e. before solving the rest of the plasma problem. Observe

that only one value of He may be imposed per magnetic line, and this restricts the

set of valid boundary conditions elsewhere. Clearly, the parallel velocity of electrons

is decoupled from the rest of the system of equations and will be obtained in the

postprocessing stage by solving the parallel projection of the steady-state continuity

equation:

B · ∇
(︂nu∥e
B

)︂
= Si. (2.35)

The solution of the electron continuity equation is heavily influenced by the choice of

boundary conditions. In the typical ranges of operation of a magnetic nozzle where

ions are mildly magnetised, current ambipolarity i.e., j = 0 can only be satisfied

in a given section of the expansion. In a steady state situation in space operation

where net zero charge in the spacecraft must be maintained, a natural choice is to

impose ambipolarity in the nozzle throat, however, in certain situations in testing

facilities it could be natural to impose ambipolarity in the downstream region of

the plume. In the collisionless limit, this choice does not affect the expansion as, as

explained before, electron continuity is solved after the solution of the ion-neutral

equations. However, the collisional corrections that induce a perpendicular drift

of the electrons with respect to the magnetic streamlines can be severely affected

by this choice. Particularly, downstream ambipolarity reduces heavily the electron

parallel velocity in the external part of the plume and, therefore, enhances electron

cross transport subsequently increasing the divergence of the plume. In subsection

2.3.1 we explore the effect of this choice on electron and total currents.

2.3.1 Collisional corrections to electron momentum equa-

tion

The collisionless limit of electron momentum equation (2.29) allowed us to decouple

its solution from the rest of the system leading to an algebraic solution [20]. In order

the justify the choice of dismissing collisions in the electron momentum equation we

come back to its collisional form (2.27) . Following an approach analogous to the one

in the previous section 2.3 we arrive at the collisional form of equations (2.31)-(2.32)

which read:
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∂He

∂1∥
= −Bχ−1u∥e (2.36)

u⊥e = χ−1uξe (2.37)

uξe =
−1

B
1⊥ · ∇He − χ−1u⊥e =

−1

B
1⊥ · ∇He − χ−2uξe (2.38)

Here one can appreciate clearly that collisions in the electron momentum equa-

tion act as corrections in powers of χ−1 to the collisionless case, with χ−1 = meνe/eB

the inverse of the Hall-parameter. Let us explore in more detail each equation sepa-

rately. Equation (2.36) states that in the absence of collisions He is conserved along

electron streamlines, collisions therefore act as a loss term for electron momentum

along these streamlines. Equation (2.37) states, that electron collisionality induces

a perpendicular velocity on the electron fluid that breaks the assumptions of perfect

magnetization taken in [20], one key feature of this equation is that in a propulsive

magnetic nozzle where electron azimuthal current is positive, collisional detachment

of electrons from magnetic streamlines is always radially outwards [46]. Finally, in

equation (2.38) collisions can be seen as an azimuthal momentum loss term due

collisional drag for the otherwise conserved (along magnetic streamlines) azimuthal

frequency uθe/ζ. Finally, Note that in equations (2.36) and (2.37) collisional correc-

tions are of order χ−1 while in equation (2.38) they are of order χ−2. In a typical

magnetic nozzle scenario the inverse of the Hall parameter is in the range of 10−3.

In this high Hall-parameter regime the collisional correction to electron aimuthal

momentum is regarded as negligible as it will be O(10−6) everywhere in the domain.

The effect of these collisional corrections in an axisymmetric magnetic nozzle are

explored further in chapter 5.

2.4 Ion Model

This section is devoted to the development of the ion models which are solved in

chapters 4 and 5. These models are very similar and based on the ones exposed

in [20]. Hereafter, we obtain the more general model that is solved in 5 and then,

making further assumptions, we obtain the model solved in 4 and that was employed

in [28].

Under the assumption that, for heavy species and particularly ions, the con-

vection of thermal energy dominates over conduction the heat-flux vector in (2.19)

vanishes. As a closure, we start by choosing a warm plasma model in which the

equation for the internal energy of ions is retained. We remind that the balance law

for the internal energy of some species α reads:

∂t

Å
3

2
nαTα

ã
+∇ ·

Å
5

2
nαTαuα

ã
= uα · ∇nαTα +Qα (2.39)
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where Qα includes collisional contributions to the internal energy and we have

taken a zero-heat flux closure and a we have substituted the pressure tensor for

a scalar pressure as corresponds to any Maxwellian species, the response of ions

in a paraxial MN to non-Maxwellian features in their VDF was explored in [47].

Consequently, the transport equations for the ion fluid read:

∂tne +∇ · (neui) = Si, (2.40)

∂tneui +∇ · (neuiui +
1

mi

neTi) = −ene

mi

∇ϕ+
ene

mi

ui ×B + Siun + SCEX(un − ui)

(2.41)

∂t

Å
3

2
neTi

ã
+∇ ·

Å
5

2
neTiui

ã
= ui · ∇neTi + Si

Å
3

2
Tn +

mi

2
(ui − un)

2

ã
+ SCEX

ï
3

2
(Tn − Ti) +

mi

2
(ui − un)

2

ò
(2.42)

Here the term SCEX represents the volumetric rate for CEX collisions. The

expressions for the rates of all collisions included in this study can be found in 5.A.

To normalize the equations we have used the ion mass mi, the elementary charge

e, the radius of the plasma exit R. We also use the properties in the centre of the

nozzle n0 and Te0 to normalize all densities and temperatures.

Although, experiments [48] and simulations have shown that ion temperature

increases downstream due to late ionization, the temperature of electrons is several

orders of magnitude larger than that of the ions in electron driven MNs. Electron

temperatures are in the range of tens of eV [49], [50], [45] while ions show lower

temperatures of the order of hundreds of Kelvin [51]. For this reason, in a first

approximation one could consider the ion fluid to be completely cold by neglecting

its internal energy. Moreover in good vacuum conditions the mean free path of

collision with neutral atoms should be small enough to neglect collisional terms

with them. In such conditions the fluid equations of the ions can be reduced to:

∂tne +∇ · (neui) = 0, (2.43)

∂tneui +∇ · (neuiui) = −ne∇ϕ+ neui ×B (2.44)

This is the ion model solved in chapter 4 and in [28] and is equal to the one

developed by Ahedo and Merino for the Dimagno code in [20].

2.5 Neutral Model

In some cases the dynamics of neutral atoms might play an important role in the

performance and the operation of the magnetic nozzle [52, 53] and in other electric
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Chapter 2. Fluid Models for Magnetised Plasma Expansions

propulsion devices [54]. The neutral model included in the studies shown in chapter

5 assumes that the neutral VDF is, as that of the ions, maxwellian. This assumption

is supported by the fact that the residence time of neutrals is much longer than that

of the ions in virtue of their lower thermal pressure. Therefore their internal energy

is given by (2.39) and their transport equations:

∂tnn +∇ · (nnun) = −Si, (2.45)

∂tnnun +∇ · (nnunun + pn) = −Siun + SCEX(ui − un) (2.46)

∂t

Å
3

2
nnTn

ã
+∇ ·

Å
5

2
nnTnun

ã
= un · ∇nnTn

−Si
3

2
Tn + SCEX

ï
3

2
(Ti − Tn) +

1

2
(ui − un)

2

ò
(2.47)

In order to reduce the dimensionality of the system one can make further assump-

tions, in partiular we assume, that neutrals are introduced in the domain without

any out-of-plane velocity, (uξn = 0), hence, the only mechanism that could induce a

rotational velocity in the neutral fluid is the exchange of azimuthal momentum with

ions via CEX collisions and, as the swirl current (following the notation in [20]) in

electron driven nozzles tends to be small, we disregard the azimuthal component of

the neutral momentum equation.

2.6 Self Induced magnetic field

Plasmas are a complex system in which a plethora of physical phenomena take

place. EPTs are usually operated in a low β parameter regime in which the plasma

currents are small compared to the ones generating the MN. For this reason, we can

usually disregard the contribution of their induced magnetic field on the total one.

However, in the downstream region in which the applied field decreases, the effect

of plasma induced fields become larger opening the magnetic field lines, creating a

separatrix line downstream and allowing plasma detachment [46, 55]. In closed line

configurations such as the Magnetic Arch Thruster [56, 28] the self-induced magnetic

field is expected to change the topology of the applied one by stretching the lines

to and opening the arch topology. To evaluate this effect we, iteratively, solve the

Ampere-Maxwell equation which together with Gauss’ law governs the behaviour of

the magnetic field:

∇× (µ−1Bp) = −∂tD + J (2.48)

∇ ·Bp = 0 (2.49)
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2.6. Self Induced magnetic field

where D is the displacement vector and J is the electric current. In the static

limit we can drop the time derivative of the displacement current and therefore the

plasma-induced magnetic field is only determined by the electric currents in the

plasma. As the magnetic field is divergence free, it can be written as the rotational

of a vector field which is known as the magnetic vector potential A. We can then

write:

−∇ · (µ−1∇A) = J (2.50)

where we have used the gauge freedom in the vector potential to fix ∇ ·A = 0,

this choice is known as Coulomb’s gauge. If we are only interested in the in-plane

components of the magnetic field this reduces to a scalar problem for the out-of-plane

component of the magnetic vector potential that can be written as:

−∇ · (µ−1∇Aξ) = Jξ (2.51)

The elliptic nature of the Poisson equation for the magnetic potential (2.51) poses

a problem for the simulation of static magnetic fields for unbounded domains. Far

away from any sources, the gradient of Aξ should decay so that its gradient is iden-

tical to zero. In fact, thanks to the gauge freedom of the potential, one could define

Aξ so that it vanishes away from currents. In practice, to simulate such scenarios one

is forced to solve equation (2.51) in a very large domain whose boundaries are set to

an homogeneous boundary condition. This is problematic in a coupled problem as

the one we deal with here as solving Aξ in a bigger domain would imply solving the

plasma equations in the same domain with the subsequent numerical cost. In order

to tackle this problem we add an anisotropic Perfectly Matched Layer (PML) to the

boundaries of the computational domain following [57]. This PML can be seen as

an absorbing region in which the magnetic potential decays much faster than in free

space without introducing new currents; this way the transition to infinity can be

compressed in a smaller domain.
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Chapter 3

POSETS: Plume SOlver for

Electrodeless Thruster Systems

This chapter describes the Plume SOlver for Electrodeless Thruster Systems (POSETS)

that has been built during the development of this thesis. The code is composed of a

set of libraries for the simulation of the expansion of magnetized plasmas. The code

includes several utilities that are described in the following, between these utilities

there is the possibility of building non-uniform unstructured meshes, the solution of

several fluid models both in planar and axisymmetric geometries with an imposed

magnetic field and the iterative solution of the plasma expansion taking into account

its self induced magnetic field. The fluid solver included in the code is based on the

Discontinuous Galerkin finite element method (DGFEM). This method combines

the advantages of the Finite Element Method (FEM), such as ease of use in non-

uniform meshes and hp-adaptivity with the advantages of Finite Volume Methods

(FVM) such as the handling of conservation laws and the exact local conservation

of physical magnitudes.

3.1 Design goals and capabilities

POSETS is intended to be a fast simulation code to assess several physical mech-

anisms taking place in magnetic nozzles. Therefore, the main goal of the code is

the simulation of magnetised plasmas in the parameter range that characterizes of

EPTs. The code has the following capabilities:

• Meshing:

– Create irregular meshes on rectangular domains with specified non-constant

cell size.

20



3.2. Numerical Integration

• Fluid Solver:

– Definition of fluid boundary conditions such as supersonic inflow, outflow,

or wall.

– Definition of the semi-discrete weak form of the problem and specification

of initial conditions.

– Time evolution and solution to steady state equations.

– Iterative solution of the fluid problem with self induced magnetic field.

• Magnetic field solver:

– Imposition of anisotropic perfectly matched layers in the domain bound-

ary for the simulation of unbounded domains.

– Imposition of Dirichlet or Newman at desired boundaries.

– Solution of Poisson equation for the magnetic vector potential in 2D.

• Postprocess:

– Interpolation into Numpy arrays for plotting.

– Evaluation of volume and surface integrals for conservation of different

magnitudes.

3.2 Numerical Integration

3.2.1 The DGFEM weak form

The Discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and

Hill to solve the linear transport equation in the context of neutron transport [58]

σu+∇ · (au) = f. (3.1)

In the 90s the Discontinuous Galerkin method gained prominence as it was fur-

ther extended to non-linear hyperbolic conservation laws and multidimensional sys-

tems of conservation laws by Cockburn and Shu [39].

Discontinuous Galerkin methods are rooted in a combination of ideas coming

from Finite Volume methods and Finite Element (or Spectral Element) methods.

Let’s briefly summarize the discretization process of an hyperbolic system of balance

laws by the DG method. Let us write this hyperbolic system as:

∂tq +∇ · F (q) = f , (3.2)
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here q is the vector of conserved variables F will be the flux function of the

system and f is a generic forcing term. To obtain the DG discretization of this

system let us first discretize the domain Ω in a set of cells Dk and consider that, in

each cell of the discretization, we can write an approximation to the solution vector

of the system q as:

q(x, t) ≃ qh(x, t) =

p∑︂
i=0

αi(t)ϕi(x), (3.3)

where ϕ is a set of basis functions defined in a single cell Dk and αi(t) is a set of

time-dependant expansion coefficients, lastly N is the the number of elements in our

function basis. Armed with these definitions we take our system of conservation laws

and multiply by a set of test functions ψi which using the Ritz-Galerkin projection

is contained in the same function space as the basis functions, and indeed, ψi = ϕi.

The choice of this function space will be discussed in more detail later in the text,

however, it is key to point out that here we do not impose continuity between

contiguous basis functions. After multiplication by the test function, we integrate

over the volume of the cell Dk to obtain:∫︂
Dk

∂tqi,hϕidx+

∫︂
Dk

(∇jFij)ϕidx−
∫︂
Dk

fiϕidx = 0 (3.4)

Where Einstein’s notation for summation is being used and we have dropped de-

pendency on space, time and conserved variables for the sake of clarity. Integrating

by parts the second term in (3.4) we obtain:∫︂
Dk

∂tqi,hϕidx−
∫︂
Dk

Fij∇jϕidx+

∫︂
∂Dk

Fijϕinjds−
∫︂
Dk

fiϕidx = 0 (3.5)

Here ∂Dk is the boundary of element Dk and n is the outward pointing normal at

each of the facets of the element. Summation over all elements of the discretization

leads to:∫︂
Ω

∂tqi,hϕidx−
∫︂
Ω

Fij∇jϕidx+

∫︂
Γext

F̂ ijϕinjds+

∫︂
Γint

F̂ ijnj(ϕ
+
i −ϕ−

i )ds−
∫︂
Ω

fiϕidx = 0

(3.6)

Here Γext = ∂Ω is the external boundary of the domain Ω and Γint is the set of

internal boundaries between facets of the discretization, therefore Γint = {∂Dk :

∂Dk /∈ Γext}, and nj is the j-th component of the outward facing normal vector

n. At this point we must remember that no restriction of continuity is imposed on

the solution in the interfaces between cells, consequently one must be careful when

evaluating the third and fourth term in equation 3.6, let us then take a closer look

at them. Both the third and fourth term contain the object F̂ ij which is usually

called the numerical trace trace of the flux Fij. This numerical trace appears due

to the fact that the flux does not have a uniquely defined value in the interface

between two contiguous cells if the solution is discontinuous there. To assign a

value to this numerical trace we use a so-called numerical flux which is just an
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approximate Riemann solver for the Riemann problem between the two cells. Some

of the most commonly employed numerical fluxes are local and global Lax-Friedrichs

flux, the Roe flux and the Harten-Lax-van Leer, Einfeldt (HLLE) flux [59, 60].

Nevertheless, it is usually argued that the choice of the numerical flux does not have

a significant impact in the discretization for high order numerical schemes [61, 62].

In the following we use the local Lax-Friedrichs flux:

F̂ ij(q
+, q−) =

1

2
(Fij(q

+) + Fij(q
−)) +

α

2
(q+ − q−) (3.7)

with α computed as the maximum of all eigenvalues of the normal flux Jacobian

(∇F · 1n) evaluated in each side of the facet. With this definition we can write the

third term in 3.6 as: ∫︂
Γext

F̂ ij(g, q
−)ϕinjds (3.8)

where g is the prescribed boundary condition in the external facets.

3.2.2 Discretization of the parabolic terms in the energy

equation

When considering the energy equation of ions and neutrals is we have introduced

some terms that are not fully conservative as the evaluation of the right hand side

in equations (2.42) and (2.47) requires the evaluation of gradients of the pressures

of ions and neutrals respectively. These terms, while of minor relevance (the tem-

peratures of ions and neutrals are orders of magnitude below that of electrons),

cannot be adequately evaluated with the current DG discretization, as elements are

not continuous across cell boundaries. In this work we instead project the pressure

of ions and neutrals onto a continuous function space of order 2 and its gradient

is then evaluated in this space. The numerical tests in subsection 3.4.6 verify the

suitability of this approach, and show that this projection step recovers the expected

convergence of the solution with element order p and element size h.

3.2.3 Choice of Finite Element Family

As stated before, one key element to the discretization of the system of equations

is the basis functions used. In this sense it is common to define two types of DG

methods, Modal-DG and Nodal-DG methods. In the former, the solution in equa-

tion 3.3 is represented by local sums of modal coefficients multiplied by a set of

polynomials, in this case ϕi is usually chosen to be a set of orthogonal polynomials

such as the Legendre polynomials. On the other hand, nodal DG methods recon-

struct the solution by interpolation on a series of nodes , therefore, ϕi is usually a

set of Lagrange polynomials defined over a set of nodes, for further discussion on

these possible choices see [63]. In the case of this work we choose the latter Nodal
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Figure 3.1: Position of nodal degrees of freedom for different order elements in a

reference triangle.

Figure 3.2: Lagrangian basis functions of order p = 1 on a reference triangular

element.

basis, the position of the nodes of the Lagrangian basis is depicted in figure 3.1 for

elements of order 0, 1 and 2 defined on a reference triangle.

An order 0 discretization has one degree of freedom per cell and its node is

chosen to be located at the centre of the cell. One degree of freedom per cell creates

a piecewise constant polynomial basis that renders a discretization equivalent to a

finite volume method (FVM) where the value of the function at the node is equal to

the the cell average of said FVM. A p = 1 discretization uses 3 nodes and, therefore,

piecewise linear polynomial functions as its basis; this basis functions are depicted

in figure 3.2. Finally a p = 2 discretization uses 6 nodes per triangular cell and a

set of six quadratic functions as a base.

The key feature of the DG method is the fact that it does not require any

continuity between contiguous elements, therefore the communication between cells

happens only through the numerical flux that is usually chosen to only take into

account contributions from the nearest neighbours allowing for a compact stencil, a

property that makes DG methods very interesting for parallelization purposes.
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Figure 3.3: Example of inter-cell communication via the numerical fluxes. The black

arrows, represent the direction of the flux, for example in an external ’ghost’ cell

and the coloured arrows represent the interelement flux that communicates cell D0

with its nearest neighbours.

3.2.4 Temporal Evolution

DG methods can be evolved in time using different schemes including space-time dis-

cretizations [64], such as forward/backward Euler methods or Runge-Kutta methods.

The POSETS code comprises three different propagators, two of them being explicit,

the forward Euler and the Strong Stability Preserving Runge-Kutta scheme(SSPRK)

and one implicit, the backward Euler method. Runge-Kutta Discontinuous Galerkin

methods (RKDG) were introduced by Cockburn and collaborators in a series of five

papers from 1987 to 1998, there they developed these kind of schemes for 1D scalar

conservation laws to multidimensional systems of conservation laws and proved them

to be stable when a SSPRK of order p+1 was used on a discretization with polyno-

mials of order p. For this reason we use from now on a three-stage strong-stability-

preserving Runge-Kutta method by Shu and Osher [65]. The time step is chosen to

be:

∆t =
0.5

2p+ 1
minj

hj
|aj|

(3.9)

Where, hj and aj are the cell size and the maximum wave-speed at cell j re-

spectively. This is a rather conservative value as the CFL number necessary for L2

stability is close to 1/(2p+ 1) [66, 67].

In reality and in some of our problems the time-step can be much higher than
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that. This is due to the fact that the velocity restriction is usually the one imposed

by the ion fluid which is the one with the shortest time-scale. For this reason, when

the simulations include both ions and neutrals and after a sufficient amount of time

for which the ions are fully expanded, the time step is increased up to 10 times the

initial time-step as the characteristic velocity of the neutrals is roughly ten times

smaller than that of ions in our simulations.

3.2.5 Shock-Capturing

A simple energy analysis on the discretization 3.6 shows that the DG method is

stabilized by the discontinuities between cells. This is, the second term on 3.7 in

the presence of discontinuities between cells acts like a diffusive term that stabilizes

the solutions in the presence of shocks. However, it can be shown that this natu-

ral dissipative mechanism introduced through the jump terms is only sufficient to

stabilize the solution in the presence of shocks when piecewise constant (i.e. p = 0)

discretizations are used. When higher order discretization are used, one may need

to introduce further dissipation to obtain stable solutions. In our case, the stabi-

lization mechanism chosen is that introduced by Hartmann and Houston [40]. This

stabilization mechanism consists in the introduction of artificial viscosity in the dis-

cretization in the locations where the solution has higher gradients. In practice, this

reduces to the appearance of a so-called shock capturing term in the discretization

3.6, this shock capturing term can be written as:

∫︂
Ω

ε∇qh · ∇ϕdx. (3.10)

Here, ε is the artificial viscosity matrix defined by:

ε = Cεh
2−β|∇ · F (qh)|Id (3.11)

where Cε and β ∈ (0, 1/2) are positive constants and Id is the d-dimensional unit

matrix. In the results shown in chapters 4 and 5 numerical diffusion was not added

as the solutions where stable. However, this might be mandatory in time-resolved

simulations with stronger shocks as exemplified in 3.4.1.

3.2.6 Finite Element Weak Form of Elliptic Problems

The DGFEMmethod is particularly well-suited for convective or convection-dominated

problems. One of the requirements of our code is the solution of the Poisson equation

for the magnetic vector potential in order to obtain the plasma-induced magnetic

field. This problem is clearly of elliptic nature, for this reason, we solve it with a
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standard finite element scheme using continuous Lagrangian elements. The obtain

the weak form of this problem we start by writing the Poisson equation of the form:

−∇ · (D(x)∇q(x)) = f(x). (3.12)

Here D(x) is a diffusion matrix which can be considered a scalar if the medium

being treated is isotropic; in the case of the Poisson equation for the magnetic vector

potential the diffusivity is equal to the inverse of the magnetic permeability.

Now we take 3.12 and multiply it by a test function ϕ contained in the space of

Lagrange polynomials of order p and integrate over the full domain. Note that in

this case we do enforce continuity between elements and therefore, the number of

degrees of freedom for a problem with the same number of cells is greatly reduced in

comparison with the case in which discontinuous Lagrange elements are used. After

this we integrate over the whole domain and apply integration by parts on the result

to get rid of second order derivatives to obtain:

−
∫︂
Ω

∇ · (D∇q)ϕdx =

∫︂
Ω

fϕdx (3.13)∫︂
Ω

D∇q · ∇ϕdx−
∫︂
∂Ω

(n ·D∇q)ϕds =
∫︂
Ω

fϕdx (3.14)

Here the second term is responsible for the implementation of the Newmann

boundary conditions in the part of the domain where it is needed, this part of the

boundary is designated by ΓN . On the other hand, Dirichlet boundary conditions

are enforced simply by taking the test function equal to zero in the parts of the

boundary ΓD where these must be imposed [68], with this choice the second term

vanishes on the Dirichlet boundary.

3.3 Numerical Implementation

3.3.1 Finite Element Libraries

In order to implement the discretizations described above, one could take two pos-

sible paths, one is to implement the whole assembly of the discretization of the

problem in a given programming language of choice. However, the assembly of the

matrix problem emerging from a finite element discretization is rather complex.

First, it involves mapping each element in the mesh of the computational domain to

a reference element where basis functions and quadrature rules are defined. Then,

local stiffness matrix and load vectors are computed and become entries of the global

matrix of the bilinear form and the RHS term. Additionally, one must enforce the
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desired boundary conditions and solve the resulting linear problem by either iter-

ative method or matrix inversion. This process, which is common in most FEM

libraries, involves O(104) lines of code and is therefore necessarily a collaborative ef-

fort. For this reason, the POSETS code is based on the open-source library FEniCS

[69]. FEniCS is one of the many freely available finite element libraries (deal.ii

[70], DUNE[71], MFEM[72], Gridap[73], Trixi.jl [74], etc.) However FEniCS stands

out for both its Python bindings and the possibility of using the Unified Form Lan-

guage (UFL) to write weak-forms for PDEs in a manner that closely resembles that

of mathematical notation. For this reasons the POSETS code is based on FEniCS.

3.3.2 Code Structure

POSETS’ architecture is intended to be easily extendable with new physics. Thus,

the implementation of the weak forms, the stabilization algorithms, the time step-

ping and all other mathematical aspects are separated from the modules that im-

plement the different physical models. As explained before, the code is based on the

FEniCS environment and, as a matter of fact, it can be understood as a higher level

of abstraction that uses FEniCS’ Unified Form Language (UFL) in order to write

DGFEM discretizations for plasma flows and solves them using the solvers included

in FEniCS. Several solvers can be used depending on the setting of the problem,

for linear systems this includes PETSc’s built in LU solver, UMFPACK, GMRES,

and others. Non linear problems are solved via Newton iteration. In the low level

FEniCS includes C++ classes for finite element computations but allows the user

to work using mostly its Python interface. For the postprocesing stage the code

mainly uses Numpy and Matplotlib for their widespread use. The list of modules

included in the POSETS code is the following:

• MeshModule

– MeshCreator.py: Creates a two-dimensional irregular unstructured meshes

prompting Gmsh[75].

– MeshReader.py: Transforms .msh meshes into FEniCS readable .xdmf

meshes.

• PhysicalModels.py: Contains the base class for the model employed. This

class defines the system of equations to be solved by defining the physical flux

F and the forcement term f appearing in equation 3.2 for each different model.

It also defined the characteristic velocities of the problem and its boundary

conditions. Parent class to ones defined in:

– Plasma2D.py: Module containing the model for the two-fluid model solved

in chapter 4.
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– Plasma_2D_energy.py: Module containing an extension of the previous

model considering the internal energy equation for the ions.

– Plasma_2D_neutrals.py: This module contains a three-fluid model in-

cluding warm, adiabatic and isentropic ions and neutrals.

– Plasma_2D_neutrals_energy.py: This module contains the three fluid

model considered in chapter 5.

• Thermodynamic Models: In these files we define classes for each species con-

taining their non-dimensional thermodynamic properties such us temperatures

and sonic speeds.

– Electrons.py

– Neutrals.py

– Ions.py

• BFields.py: Computes analytically the imposed magnetic field and the mag-

netic stream-function produced by a set of conductors.

• B_induced.py: Contains a function self_B that computes the self induced

magnetic field of the solution.

• Collisions.py: This contains the class CollisionModels that defines meth-

ods for the computation of the adimensional collision frequencies and other

properties for the different collisions included in the model.

• Discretization:

– WeakForms.py: Defines volume and surface integrals for the different

terms appearing in the discretization 3.6.

– NumericalFluxes.py: This module contains the definition of different

numerical fluxes employed in the discretization.

• MathAux.py: Defines useful mathematical functions such as maximum, maxi-

mum absolute value, etc. without branching.

• Propagators.py: Definitions for the different time-stepping procedures im-

plemented, namely: Forward and Backward Euler and third order SSPRK.

• Simulations.py: This module defines a Simulation class with methods that

allow to easily call the different simulation strategies such us use of time inte-

grators, solving steady state equations, refining the mesh and others.

• Postprocess:
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Figure 3.4: Structure of the POSETS code.

– PostProc.py: This module contains several useful functions to perform

preliminary postprocessing of the solutions such as computing fluxes

through the boundaries and others.

– np_postproc.py: Is in charge of obtaining Numpy arrays from the FEniCS

solution in order to analyze them and plot them.

– np_plots.py: Defines functions to plot some typical plasma variables

from the arrays proportioned by np_postproc.py.

The architecture of the code is illustrated in figure 3.4, there, the arrows indicate

functional dependency. The typical workflow is seen in the figure from the upper-left

corner to the lower-right corner, this is, one can create a script which loads all the

different packages to first call the meshing module and create the required mesh.

Then, one defines the PhysicalModel needed defining the different physical parame-

ters such as the number of species and the types of collisions to be included. Finally,

a time propagator and a numerical flux are chosen. This information is provided

to a simulation object which is inherits from the simulation class the methods to

solve the time evolution and the steady state solution to the discretization. The

solution can be saved into an .xdmf file which is latter read and analysed using the

functions included in the post-processing module.

3.4 Verification Tests

In order to check the correct functioning and integration of the different components

of the code, several tests have been performed on them. These tests are based on
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known analytical solutions or numerical solutions of the established DIMAGNO [20]

code. Table 3.4 summarizes the major verification tests performed on the code. The

fist two tests are purely fluid-dynamic, this is, the fluids are not magnetised and

therefore the right-hand side of the conservative system is identical to zero. The

following two tests verify the correct interaction of the LHS and RHS of the con-

servative system. Finally, the behaviour of the solver for the self-induced magnetic

field is checked.

Test name Success criterion

Shock Tube
Matching to analytical solution

of an isentropic 1D shock-tube

Prandtl-Meyer Expansion
Correct convergence to analytical Mach

number after a Prandtl-Meyer expansion.

Planar Plasma Column
Expected zero radial momentum up to tolerance,

correct convergence to analytical solution.

Magnetic Nozzle Expansion Matching to Dimagno’s Solution

Double Infinite conducting wire Matching to analytical solution.

3.4.1 Sod’s shock tube problem:

The problem of the expansion of a gas in a unidimensional tube is one of the most

common problems in compressible gas dynamics and a typical textbook example on

Riemann Problems. The simulation consist of a tube filled with gas closed in both

extremes. The gas inside the tube is initialized with a discontinuity in the middle,

that separates the left state (ρl, uzl) = (1.0, 0.0) and the right state (ρr, uzr) =

(0.125, 0.0). With time evolution this problem develops a left rarefaction wave and

a right moving shock wave [76]. In figure 3.5 we show the numerical solution to this

problem using different order polynomials. In order to avoid spurious oscillations in

the solution the shock-capturing numerical diffusion scheme (3.10) was included in

the simulations with p ̸= 0 as the diffusion introduced by the Lax-Friedrichs flux does

not suffice to stabilize the solution in these cases. In both cases Cε = 0.01 and β = 0

where used. In order to show the effect of this stabilization mechanism we show in

figure 3.6 the solution with polynomials of order one without stabilization (figure 3.6

a) and with stabilization (figure 3.6 b), clearly the stabilized solutions shows great

reduction in the Runge-Gibbs phenomenon around discontinuities while maintaining

sub-cell resolution of the shock and maintaining high accuracy away from it.
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Figure 3.5: Density and velocity solution to Sod’s shock tube problem after 0.15

units of elapsed time. In all plots the solid lines represent the analytical solution

for density (in black) and velocity (in blue) while the dashed line represents the

numerical solution for polynomials of order 0, 1 and 2 from left to right. These

three cases were obtained using a mesh with 128 elements.

Figure 3.6: Example of the stabilization mechanism using polynomials of order

one. The stabilized solution (right) shows decreased oscillations particularly in the

velocity field.
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Figure 3.7: Mesh used for the Prandtl-Meyer expansion test.

3.4.2 Prandtl-Meyer Expansion:

The solver we employ is two dimensional, therefore it is necessary to test it in a

scenario closer to that of the application of the code. To this end we solve the

typical Prandtl-Meyer expansion of a supersonic flow into a convex corner.

The solution to this problem consists in two distinct areas, the low Mach number

area with prescribed inlet boundary conditions and the high Mach number area

after the corner. These two areas are connected by an expansion fan consisting of

an infinite number of expansion waves with increasing Mach number and decreasing

density. The value of the final Mach number can be written in terms of the turn

angle and the incoming Mach number as:

θ = ν(M2)− ν(M1) (3.15)

Where ν is the Prandtl-Mayer function:

ν =

 
γ + 1

γ + 1
arctan

 
γ − 1

γ + 1
(M2 − 1)− arctan

√
M2 − 1 (3.16)

As a test case we use a turning angle of θ = 2/3 radians with an incoming Mach

number of 1.1 and unit density. Solving M2 from equations 3.15 and 3.16 with an

adiabatic coefficient of γ = 1.4 gives a Mach number of ∼ 2.33 after the expansion.

This problem is solved on an unstructured mesh shown in figure 3.7.

In order to check the correct convergence of the simulation we choose a func-

tional of the solution and compare its analytical value against that obtained in the

simulation. The functional chosen in this case is the value of the Mach number after

the expansion which is calculated analytically as explained before and sampled in

the simulation in a point after the shock. Then we define the quadratic error as

(F − Fh)
2 with F the analytical functional and Fh the numerical one. With these

definitions the problem is solved for multiple mesh sizes and polynomial orders 0 and
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Figure 3.8: Convergence rates for the Prandtl-Mayer problem.

1 to compute the convergence plot found in figure 3.8. It is worth mentioning that

the number of degrees of freedom, which is a direct measure of the computational

cost, is 894976 in the most refined case with order zero polynomials, while the least

refined order one case is 41952, which is a twenty-fold decrease in the number of

degrees of freedom with a 100-fold reduction of the quadratic error.

3.4.3 Planar Plasma Column:

As mentioned in chapter 2 the main driver of the expansion of the plasma is the

magnetic force on the electrons. This magnetic force guides electrons along the

magnetic streamlines and the expansion of electrons creates an ambipolar electric

field confining and accelerating the ions. In the limit of non-magnetised ions the

balance between this confining electric field and the electron pressure is exact in

the throat of the nozzle. To test the behaviour of electron magnetization along the

expansion we consider the following test case:

• Constant axial magnetic field: B = Buz

• Gaussian profile for the density at the inlet.

• Sonic ions at the throat.

• Polytropic electrons γ = 1.2.

• Symmetry plane (wall) in x = 0.

We can obtain an analytical solution as the equilibrium between magnetic and

pressure forces is maintained in the whole domain and therefore the Gaussian profile

at the inlet is transported downstream without deformation. This also implies that
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Figure 3.9: Convergence of the plasma column problem with h and p refinement.

Figure 3.10: Density and streamlines for the planar plasma column with polynomials

of order 1 and refinement 3.

the radial momentum must be zero everywhere in the domain. Figure 3.9 the con-

vergence behaviour of the test with h (cell size) refinement and p (polynomial order)

refinement. For this test several simulations where run with polynomial orders rang-

ing from 0 to 2 and four different mesh refinements. Clearly, polynomial refinement

is far more beneficial than mesh refinement in terms of accuracy per degree of free-

dom, this situation is common for high order methods and particularly DGFEM [77].

In the case of our problem the situation is even more critical particularly with order

0 polynomials as this means no degrees of freedom are located in the symmetry axis

and , therefore, force balance is not attainable in that region for piecewise-constant

solutions. It is clear however that the error stagnates at around 10−7 − 10−8, this is

due to the imposition of the upper boundary as an outflow boundary. This implies

the boundary conditions require a normal flux of mass in the x = 1 boundary, this

forces a radial flux outwards in a thin layer at x = 1 making the solution we are

comparing to inexact in that region, this can be appreciated in figure 3.10 where in

the region x > 0.8 the streamlines are seen to bend upwards.
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Figure 3.11: Plasma density and electric potential calculated with the Dimagno code

and the Discontinuous Galerkin method.

3.4.4 Dimagno Verification Tests

As discussed before, Dimagno is a fluid simulation code that appeared in the 2010s

[20]. The models included inPOSETS supersede and go beyond the one solved by

Dimagno. It is, therefore, natural to compare the code used in this work against

the output of Dimagno. To this end a simulation following the next indications.

Plasma expansion in a divergent-planar magnetic nozzle generated by two infinite

wires located at (z, r) = (0,±2.5) with a gaussian density profile with sonic veloc-

ity entering the domain in the r ∈ [0, 1]. In the next figure the plasma density

and electric potential of the Discontinuous Galerkin and the Dimagno solution are

compared.

We observe that the error in the density profiles is negligible everywhere in

the domain except for the lateral part close to the source. This difference can be

explained by the fact that Dimagno uses the method of characteristics in order to

solve the equations and therefore only solves the region connected to the source.

Moreover, Dimagno forces the last ion magnetic streamline to be tangential to its

corresponding magnetic streamline. The combination of these two differences in

the solution mechanism explains the matching of the solutions in the bulk and the

appearance of a clear discrepancy in the lateral part of the plasma.

3.4.5 Magnetic Field Solver

The magnetic field solver transforms Ampere’s law in a second order equation (2.51)

using the magnetic vector potential 2.6. For the test in this subsection we use a

simple problem consisting of two wires of radius 1 carrying current in the y axis

direction. Both wires carry a current density of 1 and therefore a total current of

π. The first wire is centered at (z, x) = (4, 4) and carries current in the positive

direction of the y axis and the second current is centered in the (z, x) = (−4,−4)
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Figure 3.12: Difference between the density solution obtained with DIMAGNO and

with the POSETS code.

and carries current in the negative y direction. All currents can be cast as J = Jy1y

and therefore, equation 2.51 transforms into a scalar equation in two dimensions

for the out-of-plane component of the magnetic vector potential ∇2Ay = −µJy.
The analytic magnetic field generated by this setup can be easily calculated using

Biot-Savart’s law. To gauge the accuracy of our magnetic field solver we check two

different properties, first the transition to infinity using the PML and the accuracy

of the finite element solution.

To test the former we solve the problem described before in a 30 × 30 domain,

a 20 × 20 domain and in a 12 × 12 domain. In the smaller domain the region

|x| ∈ [10, 12] ∪ |z| ∈ [10, 12] is occupied by a 4 layer PML as specified in [57], while

the other two have vacuum everywhere in the domain. We obtain the magnetic

potentials in all three cases Aξ,30 Aξ,20 and Aξ,PML respectively. All cases are solved

with the same cell size and polynomial order in the elements.

In figure 3.13 we show the isolines of the out-of-plane component of the magnetic

vector potential in all three cases mentioned above. If we take the solution with the

30×30 domain as a reference we observe clearly that the solution with the absorbing

layers performs equally or better than the 20×20 solution everywhere in the domain

while allowing for almost a four-fold reduction on the size of the problem. This is

particularly important in the case where this problem is coupled to the plasma

transport as an increase in the size of the domain for the magnetic field solver would

require solving the fluid equations in the same domain.

Moreover, we compare the magnetic field of the solution with the PML againt

the exact solution for the magnetic field along the x = 0 axis in figure 3.14. We

observe that the normalized L2 error reaches a maximum of O(10−2) close to the

boundaries while being O(10−4) in most of the domain.
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Figure 3.13: Vector potential isolines calculated in the 30× 30 domain (solid-black

lines), 20 × 20 domain (dashed-blue lines) and the 12 × 12 domain (dotted-green

lines).

Figure 3.14: Normalized quadratic error for the magnetic field along the x = 0 line

for the test problem with a PML as described in the text.

38



3.4. Verification Tests

Polynomial degree Cell size L2 error Convergence rate

0

0.2 0.0041

1.60.15 0.0025

0.1 0.0014

1

0.2 0.0025

2.20.15 0.0013

0.1 0.00053

Table 3.1: Summary of convergence results for cell size and polynomial degree in

the test for ion and neutral energy equations.

Figure 3.15: Convergence plot for the numerical test considering ion and neutral

energy.

3.4.6 Convergence of the discretization of the energy equa-

tion

Discontinuous Galerkin methods are, by construction, locally conservative for sys-

tems of hyperbolic equations [39]. However, as explained previously, we have intro-

duced some minor, yet non-conservative terms in the discretization of the energy

equation for both ions and neutrals 3.2.2. In this regard, our integration method

departs from the typical DG methods and therefore we find necessary to check the

effect of h (cell size) and p (polynomial order) refinement in our solution. To this

end we run a reference simulation considering ion and neutral energy with three

different cell sizes and for polynomial orders 0 and 1. We then run a fifth simulation

with an even finer cell size and order 1 elements, and take that solution as exact. In

table 3.1 we show the global L2 error of the different simulations, the corresponding

convergence plot is found in figure 3.15. We observe a convergence rate of 1.6 for

the order zero discretization and 2.2 for the order one discretization; the expected

asymptotic convergence rate for DG methods is O(hp+1).
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Chapter 4

Plasma Expansion in a Magnetic

Arch

The presents chapter studies the feasibility of the extraction of plasma from a closed

lined magnetic topology, so-called, magnetic arch. First, a description of the model

used is presented. Second, the physical setup for the simulations is explained and

the simulation results are presented. In this section we first show that plasma can

be extracted from a magnetic arch configuration in the β = 0 limit albeit with a

loss of ion momentum when traversing the closed line topology. After that we show

that, in this configuration, plasma induced magnetic field is beneficial for thrust

generation as it opens the magnetic streamlines allowing for a higher electron current

to be extracted. The content of this chapter is a verbatim reproduction of the peer-

reviewed article [28] appearing in Plasma Sources Science and Technology and is one

of the contributions of this thesis to the ZARATHUSTRA project. Kindly excuse

any redundant information which might be present in the former chapters of this

work, particularly in the introduction and the model sections. These offer however,

deeper detail into the technicalities of the topic in question in the present chapter.

4.1 Introduction

Magnetically-guided plasma expansions are a central part of the operation of elec-

trodeless plasma thrusters (EPTs) [2, 1, 17, 78]. A magnetic nozzle (MN) is com-

monly used to externally expand and accelerate the plasma generated by the source

[20, 79, 80, 81]. This is the case of e.g. the helicon plasma thruster (HPT)

[82, 83, 84, 85] and the electron-cyclotron plasma thruster (ECRT) [86, 87, 88].

Additionally, non-axisymmetric MNs have been proposed for contactless thrust vec-

tor control [21, 89].
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When the plasma consists of warm electrons and relatively cold ions, as in the

devices listed above, the MN is termed ‘electron-driven.’ These MNs work by per-

pendicularly confining the expansion of the warm plasma electrons, which must be

well magnetized. This confinement occurs thanks to the applied magnetic field Ba

and the diamagnetic azimuthal electron current density jθe that forms as a conse-

quence of the existence of a perpendicular electron pressure gradient and the E×B

drift. This current density gives rise to a magnetic force density in the plasma.

Part of this force density is directed radially inward (jθeBaz), while the other part

is axially outward (−jθeBar). The former balances the electron pressure (and the

electric force) in the radial direction; the latter gives rise by reaction to the magnetic

thrust, which is the force felt by the thruster magnetic circuit due to the magnetic

field induced by the electric current density in the plasma. In turn, the parallel

electron pressure is balanced by the self-consistent ambipolar electrostatic field that

forms in the MN. This field confines electrons and accelerates ions, converting the

electron thermal energy into directed kinetic ion energy [20].

Downstream, the plasma jet must eventually separate from the turning mag-

netic lines to prevent the increase of plume divergence and the cancellation of thrust

[79]. It should be noted that, at least for hot-electron and cold-ion plasmas, ions do

not need to be magnetized for the MN to operate as intended; indeed, a high ion

magnetization is generally undersirable, as it makes plasma detachment occur far-

ther downstream, increasing plume divergence angle, and promoting the appearance

of a paramagnetic azimuthal ion current density jθi in the plasma that results in

magnetic drag [20]. However, special devices, such as the variable specific impulse

magnetoplasma rocket (VASIMR) [90], rely on the expansion of hot ions, where ion

magnetization is a necessity.

A single cylindrical EPT creates a magnetic dipole moment that may induce

secular torques on the spacecraft in the presence of the geomagnetic field. Flying

EPTs in pairs with opposite magnetic polarities, such that the net dipole moment

cancels out, is a straightforward and natural way to avoid this issue. Also, the use

of more than one thruster (known as ‘clustering’) is a simple way of scaling thrust

levels for larger space missions. A pair of EPTs has the additional benefit that,

if each unit can be throttled independently, some degree of thrust vector control

can be achieved without moving parts. In this configuration, the two MNs interact

and their lines connect, resulting in a new magnetic topology that here we term

‘magnetic arch’ (MA), sketched in figure 4.1a.

Similarly, the MA is an intrinsic part of some novel EPT geometries, such as the

magnetic arch thruster (MAT) concept, where the cylindrical discharge chamber

of traditional EPTs is replaced by a “C”-shaped chamber, enveloped by coils that

create a magnetic field essentially parallel to the walls, as represented in figure 4.1b

[91, 56]. By removing the rear wall that exists in cylindrical EPTs and ensuring

full magnetic shielding of the remaining walls, it is hypothesized that this geometry
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Figure 4.1: Sketch of the magnetic lines of two cylindrical EPTs firing in parallel with

opposite magnetic polarities, forming an external MA (a). Sketch of the magnetic

lines of the conceptual MAT (b), which also features an MA in the plasma expansion

region. In red, the location of the ionization chambers; in black, the position of

magnetic coils; and in blue, selected magnetic lines.

could bring advantages with regards to losses, while reducing the appearance of

external magnetic torques on the spacecraft.

The plasma expansion in an MA is radically different to that in an axisymmetric

MN: while in a single MN the plasma flux is roughly parallel to the applied field Ba

(at least before detachment is well under way), in an MA the flux is only parallel

initially; downstream, where the lines of the two MNs connect, the plasma flux

must necessarily traverse the applied field roughly perpendicularly. Also, while the

plasma currents in the axisymmetric MN are predominantly diamagnetic (i.e., thrust

producing), they are expected to be diamagnetic and paramagnetic in the upstream

and downstream regions of the MA plasma expansion, respectively. Relatedly, while

in a MN the plasma-induced magnetic field Bp plays a secondary role in deforming

the shape of the lines, increasing divergence minimally if the MN is well-designed

[55], it can play a more important role in the MA, potentially changing the line

topology of the total field, B = Ba + Bp, with respect to that of the applied one

alone, Ba. Finally, the interaction of the two plasma jets coming from each end of

the device may lead to collisionless shock-like structures in the plume, not found in

smooth MN plasma expansions [20].
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The objective of this work is to present a first model of the MA plasma ex-

pansion to examine the viability of this magnetic topology for plasma acceleration

and discuss its main physical mechanisms, in particular behind ion acceleration

and magnetic thrust production. By examining the the zero plasma-beta expan-

sion, β = µ0nTe/B
2
a = 0, and expansions with small β ̸= 0, the effects of the

plasma-induced magnetic field on the shape of the MA and the generated thrust

are discussed. The model is of application to clusters of two cylindrical EPTs and

to the novel MAT configuration described above. Finally, we identify the main

physics currently outside of the present model that should be included in the future.

Nevertheless, the major limitations of the study can be already stated from the out-

set: firstly, we shall only study a 2D planar version of the MA, rather than a full

3D geometry. Secondly, we shall ignore plasma kinetics, and employ a collisionless

multi-fluid plasma model with a simple polytropic closure for the electron pressure.

The rest of the document is structured as follows. Section 4.2 presents the

mathematical model of the plasma expansion in the MA and describes the approach

followed to integrate it numerically. Section 4.3 contains the results of the first MA

simulation using this model in the β = 0 limit, including plasma density, ion velocity,

electrostatic potential, plasma currents, and magnetic thrust. Subsection 4.3.2 then

discusses the plasma-induced magnetic field for β ̸= 0, and how its presence alters

the expansion and magnetic thrust with respect to the β = 0 case. The limitations

of the model and its results are reviewed in section 4.4. Finally, section 4.5 briefly

summarizes the main points of this work. A preliminary version of this work was

recently presented in [91].

4.2 Model

A two-dimensional, two-fluid (ions i and electrons e) model of the steady-state

plasma flow in an MA is considered. The model takes the following assumptions:

1. Quasineutral, collisionless, fully-ionized plasma.

2. Inertialess, quasi-Maxwellian, perfectly-magnetized electrons with a polytropic

closure relation.

3. Cold, singly-charged ions, with arbitrary magnetization, emitted from each

source exit. Moreover, ions are assumed to remain cold downstream, neglecting

the effects of any shock-like discontinuities on ion temperature/distribution

that may exist in the solution.

4. Planar-symmetric geometry, as an intermediate step toward the actual three-

dimensional geometry of the device. We consider the meridian plane of the

plume and assume an infinite plasma with uniform properties in the perpen-

dicular direction.
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Chapter 4. Plasma Expansion in a Magnetic Arch

To normalize the model, we select the ion mass mi, the electron charge qe, and

the radius R of one of the plasma thruster exits. And, using the properties at the

center of one of the two symmetric thruster outlets (where variables are marked with

subindex 0), the electron temperature Te0 (in energy units) and the plasma density

n0 used for injection. Note that, even if flux coming from one outlet ever arrives at

the other, Te0 and n0 are defined from the single-beamlet injection properties. This

point of the outlets is also chosen as the origin of the electrostatic potential, where

ϕ0 = 0. In the following, all symbols are already appropriately dimensionless. In

particular, the dimensionless magnetic field strength at the center of the outlet, B0,

is normalized with
√
miTe0/(eR), and coincides numerically with the dimensionless

ion gyrofrequency Ωi0, and defines the (initial) ion magnetization degree.

Figure 4.2 sketches the problem domain. We define a right-handed reference

frame with the plane Oxy coincident with the exit plane of the plasma sources,

and the Oz axis pointing downstream. The plane under study is the Oxz plane,

and in the 2D expansion the plasma is infinite and uniform in the y direction. The

plane Oyz is a symmetry plane, and thus only the upper half of the plane (x ≥ 0,

shown in the figure) will be simulated. Without loss of generality, B is taken to

point axially downstream in this part of the MA. We introduce the Cartesian vector

basis {1x,1y,1z} and the magnetic vector basis {1b,1⊥,1y}, with 1b = B/B and

1⊥ = 1y × 1b. Both bases are right-handed and orthonormal.

The applied magnetic field Ba is generated by a set of thin, infinite electric wires

w, each carrying an electric current Iw along the 1y direction. The arrangement of

wires and their electric currents is antisymmetric about the Oyz symmetry plane,

and the sum of the Iw over all the wires equals zero. The magnetic streamfunction

of a single wire w is given by

ψBw = −µ0Iw
2π

ln ρw, (4.1)

where ρw is the polar distance from the wire. Summing over the wire contributions

we obtain the streamfunction ψBa of the applied field.

The plasma-induced magnetic field Bp has the streamfunction ψBp given by

Ampère’s equation, which reduces to a manifestly elliptic partial differential equa-

tion:

∂2ψBp

∂z2
+
∂2ψBp

∂x2
= −µ0jy ≡ −β0B2

a0jy, (4.2)

where jy is the out-of-plane plasma electric current and β0 = µ0/B
2
a0 is the β pa-

rameter at the centerpoint of the thruster outlet, already normalized with n0 and

Te0.

The total magnetic field B is the sum of the applied and plasma-induced ones,

with ψB = ψBa + ψBp, and

B ≡ Ba +Bp = ∇ψB × 1y. (4.3)
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Figure 4.2: Sketch of the problem domain of the 2D planar MA plasma expansion.

Only one half of the MA is simulated, taking advantage of the symmetry plane Oyz

(in orange). The plasma source is located on the left of the domain (purple line),

where plasma inflow conditions are prescribed. The second plasma source is located

below the symmetry plane and is not visible in the sketch. The rest of the boundaries

are free (supersonic) outflow boundaries (green lines). The applied magnetic field

Ba strength (colormap) and streamlines (black lines) are shown. Magnetic lines

connecting with the source edges and center are shown as thicker lines. The symbols

⊗ and ⊙ are used to denote the location of electric wires generating the field,

with electric current going into and out of the paper, respectively. The magnetic

sepatratrix line of the applied field, given by ψBa = 0, is plotted in red.

When β0 = 0 the plasma-induced magnetic field Bp is negligible with respect to

the applied one Ba, and the total field coincides with the latter. Then, equation

(4.2) may be dropped from the model. This is the case analyzed in the first part of

section 4.3.

Note that 1⊥ ≡ ∇ψB/B and, for any single-variable function f(ψB),

∇f =
∂f

∂1⊥
1⊥ = B

df

dψB

1⊥.

The relevant collisionless fluid equations of electrons and ions are

∂n

∂t
+∇ · (nue) = 0, (4.4)

0 = −∇(nTe) + n∇ϕ− nue ×B (4.5)

∂n

∂t
+∇ · (nui) = 0, (4.6)

∂nui

∂t
+∇ · (nuiui) = −n∇ϕ+ nui ×B (4.7)

where we have already imposed plasma quasineutrality,

n ≡ ne = ni. (4.8)
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The electrons are assumed polytropic with the law Te = nγ−1 on the whole

domain, with fixed exponent γ. We note that

1

n
∇(nTe) =

γ

γ − 1
∇nγ−1,

where the equality holds for γ ̸= 1. Observe that the relevant dimensionless sound

speed is cs =
√
γTe.

Under the assumption of full electron magnetization, electron streamlines co-

incide with magnetic lines. Indeed, from equation (4.5) we infer that, since there

are no pressure gradients nor electric fields in the uniform 1y direction, there is no

electron fluid velocity along 1⊥. Therefore we write the electron fluid velocity as:

ue = uye1y + u∥e1b. (4.9)

With these premises, equation (4.5) becomes

0 = −∇
ï

γ

γ − 1
(nγ−1 − 1)− ϕ

ò
− uyeB1⊥. (4.10)

Integrating this equation along the magnetic lines, we find that the electron energy

He is conserved along them,

He(ψB) =
γ

γ − 1
(nγ−1 − 1)− ϕ. (4.11)

The function −He can also be understood as a thermalized potential for the electron

dynamics.

The out-of-plane electron velocity uye can be computed from the map of ∇He

[20]:

uye(ψB) = − 1

B

∂He

∂1⊥
= −dHe

dψB

= −H ′
e. (4.12)

This uye results from the sum of the diamagnetic (i.e., pressure-driven) and E ×B

drifts, which are the only first-order drifts in the problem (and indeed, they scale as

1/B). The function He, its derivative H
′
e, and consequently uye, can be computed

from the boundary conditions at z = 0 on each magnetic line. This computation

can be done a priori, i.e. before solving the rest of the plasma problem. Observe

that only one value of He may be imposed per magnetic line, and this restricts the

set of valid boundary conditions elsewhere.

Lastly, we note that u∥e does not appear in equations (4.5)–(4.7), and is effec-

tively decoupled from the rest of the problem. Indeed, it can be computed from

equation (4.4) and the boundary conditions a posteriori, after all other variables

have been solved for. In the steady state, and for zero perpendicular electron veloc-

ity (u⊥e = 0), this equation reduces to

∂

∂1b

(︂nu∥e
B

)︂
= 0. (4.13)

46



4.2. Model

There are two different types of magnetic lines in the MA: inner lines that

connect the two plasma sources through the symmetry plane, and outer lines that

go around the upper part of the domain without intersecting it. In the β0 = 0

case, the separatrix between these two behaviors corresponds with the magnetic line

labeled by ψB = 0 (see figure 4.2), inner lines have ψB < 0, and outer lines have

ψB > 0.

In steady state, the electron current on inner lines must be zero due to the

symmetry of the problem, and therefore u∥e = 0 there. This sets an additional

consistency requirement on the electron velocity boundary conditions on these lines.

On the other hand, outer lines can carry electron current, and u∥e ̸= 0 is allowed on

them. For a globally-current free MA, the total electron current leaving the plasma

sources along these magnetic lines must equal the total ion current emitted by the

sources. This aspect of the model is discussed in more detail in section 4.4.

The electron equations have therefore been reduced to (1) a conservation law

for He, (2) an algebraic expression for uye, (3) a line-wise differential equation for

u∥e. Equation (4.11) may be regarded as the law that provides the electrostatic

potential on each magnetic line as a function of the electron density and the magnetic

streamline function:

ϕ(n, ψB) =
γ

γ − 1
[nγ−1 − 1]−He(ψB). (4.14)

Introducing relation (4.14) into the ion momentum equation (4.7) to eliminate ϕ

and using (4.12) to eliminate uye results in the following set of differential equations

for n, uzi, uxi, and uyi:

∂n

∂t
+
∂nuzi
∂z

+
∂nuxi
∂x

= 0 (4.15)

∂nuzi
∂t

+
∂nuziuzi
∂z

+
∂nuxiuzi
∂x

+
∂nγ

∂z
= −n (H ′

e + uyi)Bx, (4.16)

∂nuxi
∂t

+
∂nuxiuzi
∂z

+
∂nuxiuxi
∂x

+
∂nγ

∂x
= n (H ′

e + uyi)Bz, (4.17)

∂nuyi
∂t

+
∂nuyiuzi
∂z

+
∂nuxiuyi
∂x

= n(uziBx − uxiBz). (4.18)

In the steady state, each species admits a streamfunction ψj such that ∇ψj =

−nuxj1z +nuzj1x, for j = e, i. For the magnetized electrons, ψe is a function of ψB.

For ions, which are non-magnetized or only partially-magnetized, streamlines may

differ from magnetic lines.

The last ion equation (4.18) can be integrated to yield (see [20] for the analogous

equation in the axisymmetric MN):

uyi + ψB = D(ψi), (4.19)

where D(ψi) depends only on the ion streamfunction and can be determined from

the boundary conditions at the thruster outlet.
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Observe that, if uyi = 0 at injection, the ion out-of-plane velocity uyi develops

only when ion streamlines separate from their initial magnetic field lines; this uyi
is positive if the ion streamline detaches inwardly from the magnetic field lines (i.e.

along −1⊥), and negative if separation is outwardly (i.e., along +1⊥). Nevertheless,

when ion magnetization is weak (B0 ≤ O(1)), the last term in the ion momentum

equations (the ion magnetic force) is typically small. Then, if uyi ≪ 1 initially, it

remains so everywhere else, and the electron magnetic force dominates in the right

hand side of equations (4.16) and (4.17).

Finally, we define the in-plane ion velocity as ũi = uzi1z+uxi1x, and the in-plane

ion Mach number as Mi = ũi/
√
γTe.

4.2.1 Numerical integration

The differential ion equations (4.15)–(4.18) are in conservative form, and can be

formally written as

∂Q

∂t
+∇ · F = R, (4.20)

where

Q =

⎡⎢⎢⎢⎣
n

nuzi
nuxi
nuyi

⎤⎥⎥⎥⎦ ,

F =

⎡⎢⎢⎢⎣
nuzi nuxi

nu2zi + nγ nuziuxi
nuziuxi nu2xi + nγ

nuziuyi nuxiuyi

⎤⎥⎥⎥⎦ ,

R =

⎡⎢⎢⎢⎣
0

−n (H ′
e + uyi)Bx

n (H ′
e + uyi)Bz

n(uziBx − uxiBz)

⎤⎥⎥⎥⎦ .
The equations are discretized using a discontinuous Galerkin (DG) method, which

for zeroth-order polynomials coincides with the finite volume method. The main

advantage of the DG approach is that it enables easily improving the accuracy of

solution by refining the mesh size h and/or increasing the order of the polynomials

p. After multiplying equation (4.20) by a test vector V , integrating in an element

Dk with boundary ∂Dk, and using integration by parts, the following weak form is

obtained: ∫︂
Dk

V · ∂Q
∂t

dΩ +

∫︂
∂Dk

V · F · 1ndS −
∫︂
Dk

F : ∇V dΩ

=

∫︂
Dk

V ·RdΩ,
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where dΩ is the area differential and 1ndS is the outward-oriented area vector dif-

ferential. Upon summation over all elements Dk of the domain, the second integral

must be substituted by the corresponding numerical flux integral on all internal

boundaries, taking into account the jump conditions across neighboring elements:∫︂
Γint

V · F · 1ndS =

∫︂
Γint

(V + − V −) · F̃ · 1ndS (4.21)

where Γint are the internal facets of the discretization, symbols ‘+’ and ‘−’ indicate

the values of a discontinuous variable on one side and the other side of an internal

facet, with 1n pointing toward the + side, and F̃ is a numerical flux function. In

this work a local Lax-Friedrichs flux is chosen, given by

F̃ =
1

2
(F(Q+)−F(Q−) + α(Q+ −Q−)), (4.22)

with α computed as the maximum of all eigenvalues of the normal flux Jacobian

(∇F · 1n) evaluated in each side of the facet.

A similar treatment is applied on the external boundary facets, denoted by Γext,

except that on those facets the + side corresponds to the weakly imposed boundary

conditions. The external boundary is further decomposed into Γin, Γout, and Γsym for

supersonic inflow, supersonic outflow and symmetry plane boundaries respectively

(see figure 4.2). At the inflow boundary, the Q+ vector on the + side is determined

by the desired inflow conditions. At the supersonic outflow boundary, the Q+ vector

is taken equal to Q− (i.e., the value of Q on the corresponding boundary element

of the domain, and finally, at the symmetry plane the Q+ vector equals Q− in the

density and parallel flux, and zero perpendicular flux is imposed (i.e., nuxi = 0).

The discretized plasma problem is initially integrated in time using a third order

Strong Stability Preserving Runge-Kutta scheme given in [39]. As initial conditions

for the time integration, any gross approximation of the expected steady state flow

can be used to speed up the convergence. After a sufficient amount of time steps,

the steady state version of the equations are solved for.

In β0 ̸= 0 cases, the plasma-induced magnetic field problem is integrated using

the continuous Galerkin method using first order (Lagrange) elements on the same

mesh as the plasma problem. The weak form of (4.2) is∫︂
Ω

∇V · ∇ψBpdΩ = −β0B2
a0

∫︂
Ω

V jydΩ (4.23)

where V is a test function The boundary conditions used are Bpz = ∂ψBp/∂x = 0

at the symmetry plane x = 0 as indicated above, and Bpx = −∂ψBp/∂z = 0 at the

thruster exit plane z = 0. On the rest of the boundary, and on the outside of the

plasma domain shown in figure 4.2, a thin absorbing layer with artificial anisotropic

magnetic permeability is defined following [57], a method that is equivalent to a

coordinate stretching, to better approximate the transition to infinity of Bp.
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Notwithstanding this, it must be noted that the electric currents inside the

thruster discharge chambers and beyond the simulation domain (i.e. further down-

stream) also affect the value of Bp; as these currents are unknown, and to partially

mitigate their influence on the results, the peripheral part of the domain is cut off

from the shown results whenever β0 ̸= 0.

The self-consistent plasma and magnetic field solutions are determined using an

iterative procedure: The plasma flow is first solved for theB = Ba (i.e., ignoring the

plasma-induced field). This yields a first approximation to the out-of-plane plasma

electric current jy, that is used to compute ψBp for the next iteration using (4.2).

The plasma flow is then recomputed for the new total field B = Ba + Bp, and

this process is repeated until plasma variables and ψBp vary less than a prescribed

tolerance from iteration to iteration, at which point convergence is reached.

The numerical implementation of the model employs GMSH [75] and FENICS

[69] as open-source building blocks. The code has been verified successfully by

simulating two simple cases: (1) a plasma flowing in a straight, uniform magnetic

field; and (2) a 2D planar MN, and comparison against the existing DIMAGNO

code [20]. Mass and momentum are successfully conserved in the simulation. A

convergence study with mesh size and polynomial order was also conducted and

confirmed the correct behavior of the code.

4.3 Simulation results

The applied magnetic field used for the simulations presented in this section is gener-

ated by four identical wires contained in the Oxy plane, located at x = 3, 7,−3,−7,

as shown in figure 4.2. The thruster outlet in this half of the MA is located on the

Oxy plane and goes from x = 4 to x = 6, and the normalized magnetic field at

the center point of the thruster outlet, (z, x) = (0, 5), is B0 = 1 (mild initial ion

magnetization).

The boundary conditions at the thruster outlet are modeled as follows:

uzi(0, x) = cs(0, x); n(0, x) = 10−3(x−5)2 ;

uxi(0, x) = 0; ϕ(0, x) = 0;

uyi(0, x) = 0; u∥e(0, x) =

®
0 for ψB < 0

U∥e for ψB ≥ 0
;

i.e., the plasma density profile is assumed Gaussian, centered on x = 5 falling three

orders of magnitude at the edges of the outlet, and the axial velocity is given as

a function of the local sound velocity such that the in-plane ions are sonic at the

magnetic throats (Mi0 = 1) [20]. In the last expression, U∥e is a constant electron

parallel velocity imposed on outer magnetic lines (i.e., those that can carry electron
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current), computed such that the net electric current emitted by the plasma source

is zero.

The electron polytropic exponent is set to γ = 1.2, a value commonly found

empirically in MNs [92]. The out-of-plane electron velocity at the outlet of the

thruster is given by equation (4.12) evaluated at z = 0 and the conditions above,

uye(0, x) =
1

Bz

γ

γ − 1

∂nγ−1

∂x
. (4.24)

This choice of boundary conditions means that, at the outlet, there is no x-directed

electric field, and the electron pressure and the electron magnetic force are in equi-

librium.

For a smoother numerical solution and to prevent regions of zero plasma density,

we extend these conditions all the way from x = 3 to x = 7, where the thin wires

that generate the magnetic field are located. This completely determines the value

of He on the whole the domain.

A mesh with cell diameter h = 0.29 and elements of order p = 1 were used to

obtain the solutions shown below.

4.3.1 Plasma expansion in the β0 = 0 limit

We begin with the analysis of the plasma expansion when β0 = 0, and the total

magnetic field B = Ba.

The map of He(ψB) plays a crucial role in the plasma response as its derivative

H ′
e fixes the out-of-plane electron velocity uye, which defines the electron magnetic

force. The resulting profile of He and the uye that follows from the boundary condi-

tions are plotted in figure 4.3. The direction of the gradient of He causes the electron

out-of-plane velocity uye to be positive and negative below and above the magnetic

centerline of the plasma outlet, respectively, resulting in a magnetic force that con-

fines the expanding electrons to their respective magnetic tubes. This change of sign

contrasts with the typical situation in an electron-driven MN, where the out-of-plane

electron velocity uye has the same sign everywhere [20].

Figure 4.4 displays the steady-state solutions for the plasma density n, electron

temperature Te, electrostatic potential ϕ, in-plane ion velocity ũi, and in-plane ion

Mach number Mi. Several aspects of these results stand out. Firstly, and similarly

to a MN, the plasma expansion is initially guided by the magnetic field, and as

the (essentially unmagnetized) ions accelerate, their streamlines do not adhere to

the magnetic lines, separating inward with respect to B, as in the axisymmetric

MN case [79]. The plasma density, electron temperature, and electrostatic poten-

tial all decrease axially as the plasma expands in this first fraction of the domain.

Secondly, ion streamlines on the periphery of the MA become essentially straight.
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Figure 4.3: Dimensionless He function and electron out-of-plane velocity uye result-

ing from the applied magnetic field and the upstream plasma conditions (normalized

with Ba0). Magnetic lines (black) are included in the plots for reference (thicker lines

correspond to edges and center of the plasma source).

Inward detachment proceeds as in an MN for outer magnetic lines above the separa-

trix ψB = 0, which curve back and around the upper part of the domain. However,

for inner magnetic lines below ψB = 0, which eventually curve downward and in-

tersect the symmetry plane, ion trajectories must traverse magnetic lines in the

outward direction. This changes ion detachment from being inward-directed to be-

ing outward-directed in part of the domain, in contrast to what occurs in an MN.

Thirdly, closer to the symmetry plane, an oblique shock structure form, at the lo-

cation where ion streamlines coming from the two thruster outlets would meet. Ion

streamlines are deflected at the shock, and plasma density, electron temperature,

and electrostatic potential rise across it. In-plane ion velocity and Mach number,

which increase in the first part of the expansion, fall through the oblique shock. Ions

remain supersonic downstream of it.

A major conclusion arising from these results is that the unmagnetized ions are

not confined by the MA magnetic field, but are able to form a jet that propagates

beyond it to infinity. This last observation is crucial to the validity of the MA

concept and for the operation of a cluster of two cylindrical EPTs with opposing

magnetic polarities.

Figure 4.5 displays the in-plane electric current density, ȷ̃ = n(ũi−u∥e1b), taking

a uniform distribution of electron macroscopic velocity on the outer magnetic lines
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Figure 4.4: Dimensionless plasma density n, electron temperature Te, electrostatic

potential ϕ, in-plane ion velocity ũi and in-plane ion Mach numberMi. Selected ion

streamlines (purple arrowed lines) are shown in the ũi plot. Magnetic lines (black)

are included in the plots for reference (thicker lines correspond to edges and center

of the plasma source).
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Figure 4.5: Dimensionless in-plane electric current density ȷ̃ = n(ũi − u∥e1b) (back-

ground color and purple arrowed lines). The separatrix line ψB = 0 is shown in red.

Magnetic lines (black) are included in the plots for reference (thicker lines corre-

spond to edges and center of the plasma source).

(ψB > 0) to yield a globally current-free solution. As the electron flux on inner

magnetic lines (ψB < 0) must be zero, the ȷ̃ in this region results solely from the

ion current. Above the separatrix line ψB = 0, the strong compensating electron

current responsible for making the system globally-current-free dominates. Clearly,

the location of the separatrix line ψB = 0 with respect to the thruster outlet is

a major defining aspect of the MA plasma expansion with regard to the in-plane

electric currents. This aspect is further discussed in section 4.4.

Figure 4.6 depicts the x and z magnetic force densities jyBz and −jyBx, where

jy = n(uyi−uye) is the out-of-plane electric current density. We note that jy is dom-

inated by the electron contribution everywhere in the domain, as ion magnetization

is low. Observe that the product jyeB is essentially independent of the magnitude

B0 by virtue of equation (4.12). Indeed, this product depends essentially on the ini-

tial electron pressure gradient at the thruster outlets, which determines the profile

of He.

The two components of the magnetic force density are largest near the thruster

exit plane. The x force density, essentially perpendicular to the magnetic lines in

the first part of the domain, confines the plasma expansion laterally. As it can be

observed from figure 4.6a, this confining force points in the x > 0 direction in the

innermost part of the arch (i.e. in the region between the two plasma sources), while

it points along x < 0 everywhere else, helping reduce the divergence of the jet.

The z force density gives rise to magnetic thrust, and is seen to be large and

positive at the beginning of the expansion, where n, Te and B are large. A small

negative contribution exists downstream on inner magnetic lines, beginning at the

point where Bx = 0 and lines curve down toward the symmetry plane. This neg-

ative contribution is mostly noticeable in the region after the shock wave, where

plasma density (and therefore the out-of-plane current density) increases locally
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4.3. Simulation results

Figure 4.6: Magnetic force density in the axial (−jyBx) and radial (jyBz) directions.

White lines separate regions with positive (+) and negative (−) values of the force

densities. Magnetic lines (black) are included in the plots for reference (thicker lines

correspond to edges and center of the plasma source). Mind the different color scales

of each plot.

again. These characteristics are consequential on the magnetic force density and

the generation of magnetic thrust: while positive thrust is generated initially in the

region where they resemble a traditional MN, the magnetic force generates drag in

the downstream region where the magnetic lines of each thruster connect, lowering

the net thrust of the device.

As follows from the sum of the electron and ion momentum equations (4.5) and

(4.7), the magnetic thrust force generated by the plasma contained in a rectangular

control volume Ω(z) that spans the domain from the initial plane z = 0 to a variable

axial position z can be equivalently computed as

F (z)− F (0) =

∫︂
Ω(z)

(−jyBx)dΩ

=

∫︂
∂Ω(z)

[(nu2zi + nγ)1z + nuxiuzi1x] · 1ndS,

where ∂Ω(z) is the full boundary of the control volume. The first integral is the

volume integral of the axial magnetic force density in figure 4.6b, while the second

integral is the flux integral of total momentum on the boundaries of the integration

domain. Observe that the relative importance of electron pressure thrust decreases

to zero sufficiently far downstream, and that ion momentum dominates as the ex-

pansion converts electron thermal energy into ion kinetic energy.
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Figure 4.7: Thrust integral over z-const surfaces, as a function of z. The thick black

line correspond to β0 = 0. The other lines are for simulations with β0 = 0.02 (blue

line), 0.04 (red), 0.08 (green) as indicated in the plot. Values have been normalized

with the total momentum flux at the thruster exit.

Figure 4.7 displays the thrust force F (z) normalized with F (0), the initial mo-

mentum flux of the plasma coming out of the sources (directed ion momentum plus

electron thermal momentum). Positive magnetic thrust is produced initially, in the

first part of the expansion. When the plasma approaches the bend in the magnetic

lines and the shock, magnetic thrust plateaus, and thereafter, a minor contribution

of negative thrust (i.e. magnetic drag) results by which F (z) decreases by a small

amount. As indicated above, this is a natural consequence of the closed shape of

the inner magnetic lines and the maps of n, uye, which give rise to a negative axial

magnetic force density near the symmetry plane in the second part of the expansion,

as shown in figure 4.6. In the present simulation with β0 = 0, the negative contri-

bution decreases F (z)/F (0) about an 8% at z = 20 with respect to its maximum,

which occurs at z ≃ 7.

4.3.2 Effect of the plasma-induced magnetic field

Figure 4.8 displays the normalized plasma-induced magnetic field Bp/(β0Ba0), com-

puted from the jy current density corresponding to the β0 → 0 limit. To mitigate

the influence of the plasma currents beyond the simulation domain on the solution,

the peripheral part of the results has been cut out from this and following plots.

As noted before, jyBa is essentially independent of Ba0 in the low ion magneti-

zation regime under consideration. Consequently, by virtue of equation (4.2), the

dimensionless group Bp/(β0Ba0) is also essentially independent of β0 and Ba0. The

direction of Bp opposes the applied one in the proximity of the symmetry plane,

and points roughly axially downstream far from it. Hence, the trend of Bp is to

stretch the MA downstream as β0 increases.
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Figure 4.8: Induced magnetic field strength and lines derived from the out-of-plane

plasma current jy, normalized with β0Ba0.

Figure 4.9 displays the self-consistent total magnetic field B = Ba+Bp and the

streamlines for ψB = ψBa +ψBp for different values of β0. As β0 is increased from 0,

Bp gains relative importance. The main effect is the modification of the geometry

of the central lines of the MA, which are stretched downstream. The separatrix line

displaces downward, and some inner magnetic lines that intersected the symmetry

plane for β0 = 0 are converted into outer lines that go around along the periphery

of the domain. As the fraction of inner lines shrinks and the fraction of outer lines

grows, more magnetic lines can carry electron current away from the device.

For the larger values of β0 shown, a region of very low magnetic field strength

forms near the symmetry plane and the separatrix eventually intersects with it,

forming an ‘X’ point at which B = 0, visible for β0 = 0.08 in figure 4.9. This brings

about a topology change of the MA, which now features a new magnetic region

that forms beyond the ‘X’ point, whose magnetic lines are disconnected from the

upstream plasma sources.

While the general characteristics of the plasma expansion are qualitatively similar

to the β0 = 0 case, the value of β0 has a major effect on the generated magnetic

thrust F (z)/F (0). Figure 4.7 displays the evolution of the thrust force as a function

of β0. It is evident that, while the initial part of the curve roughly coincides for all

cases, the stretching of the MA reduces the negative drag contribution that occurs

downstream. Indeed, as β0 increases, the magnetic thrust force generated within the

domain rises. For β0 = 0.04, F (z)/F (0) remains almost flat after a weak maximum,

and for β0 = 0.08, the local maximum disappears altogether, with the relative thrust

gain F (z)/F (0) increasing by 10% at z = 20 with respect to β0 = 0.

These results suggest that the plasma-induced field Bp plays a central role in

shaping the expansion and the propulsive performance of the device.
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Chapter 4. Plasma Expansion in a Magnetic Arch

Figure 4.9: Dimensionless total magnetic fieldB = Ba+Bp strength and streamlines

for β0 = 0, 0.02, 0.04 and 0.08. Magnetic lines (black) are included in the plots for

reference (thicker lines correspond to edges and center of the plasma source). The

separatrix line in the last case is shown as a red line.
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4.4. Discussion

Figure 4.10: Sketch of two MA configurations with β0 = 0: open arch (a) and closed

arch (b). Lines represent magnetic field lines. Thicker blue lines correspond to the

edges of the plasma source. The red line is the separatrix (ψB = 0). Black squares

represent the position of the magnetic field generators.

4.4 Discussion

The results from the previous section merit additional discussion. Firstly, the loca-

tion of the separatrix line and its effect on electron currents deserves closer inspec-

tion, as the global current-free condition is an essential one that must be satisfied by

any plasma thruster operating in space. It is possible to distinguish different types

of MA, depending on the connectivity of the magnetic lines passing by the plasma

source exit with the symmetry plane:

1. If there are both inner lines and outer lines (as defined in section 4.2) pass-

ing through the plasma source, an open arch is formed as sketched in figure

4.10(a). This occurs when the separatrix falls within the limiting magnetic

lines at the edges of the source, it is the relevant type of MA for tightly-

packed magnetic generators around the sources, and the one simulated in this

work. The plasma expansion in the MA can be globally current-free, as long

as the electron current in the lines above the separatrix balances the emitted

ion current. A variant of this configuration has the last magnetic line passing

by the lower edge of the source intersecting the thruster exit plane, rather than
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the symmetry plane.

2. If all magnetic lines passing through the outlet are inner lines, we have a closed

arch as in figure 4.10(b). In this case, all plasma-carrying lines lie below the

separatrix. No electron current can be extracted from the plasma thrusters in

the fully-magnetized-electrons, collisionless, β0 = 0; this is a consequence of

electrons having zero perpendicular velocity, u∥e = 0 in this limit. Hence, the

‘closed’ MA cannot be current-free without invoking additional effects. This

configuration occurs e.g. for larger separation of the magnetic field generators

from the source.

3. Yet another magnetic configuration could be discussed, if all the magnetic

lines that pass through the outlet are outer lines. In this case (not sketched),

there is no real “arch”, and the separatrix falls below the lower edge of the

plasma source. This situation would arise when e.g. the plasma sources are

not concentric with the magnetic field generators, and is considered of lesser

practical interest.

Interestingly, as shown in section 4.3.2 the downward displacement of separatrix line

as β0 is increased may cause a change of MA type. In particular, a closed arch is

expected to become an open arch for a sufficiently high value of β0.

Secondly, even in the strict β0 = 0 limit, collisions and an out-of-plane electric

field Ey are mechanisms outside of the present model that could relax the electron

transport in the perpendicular direction, thus enabling u⊥e ̸= 0 and, as a side effect

and as dictated by the continuity equation, allow u∥e ̸= 0 (and therefore electron

current extraction from) even on inner magnetic lines.

The main effect of non-zero collisions on the in-plane electron transport can be

understood by including a new term in electron momentum equation (4.5), which

now becomes

0 = −∇(nTe) + n∇ϕ− nue ×B −Re, (4.25)

where Re = nmeνeue is a simple representation of the collisional term. The y

projection of this equation yields

u⊥eB = χ−1uye, (4.26)

with χ = B/(meνe) the local Hall parameter. Hence, a perpendicular electron flux

arises, with u⊥e ̸= 0 pointing in the direction opposite to the confining −euyeB1⊥

force.

An electric field in the out-of-plane direction, Ey1y, can also enable perpendicular

electron flux. The E × B drift induced by this field generates a collisionless u⊥e.

This mechanism may play a role e.g. in 3D MA expansions, where Ey may arise
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if the plasma undergoes lateral polarization, but is not present in the 2D planar

geometry studied here.

Thirdly, another major aspect to be discussed is the validity of the electron

model. The profile of He that is defined at the upstream plane by the boundary

conditions on n, Te, and ϕ fully determines He in the rest of the domain, and

therefore H ′
e, which dictates uye and defines the magnetic force density in the plume.

The map of He, together with the map of n, also defines the electrostatic potential ϕ

in the plume. As such, He has a central role on the MA plasma dynamics. However,

while it is reasonable to prescribe He on the plasma-carrying magnetic lines that

pass through the source, it is not evident what should be the condition on the

external lines outside of this main magnetic tube where plasma density is negligible.

Here, in this first simulation, we have opted to define He there by setting n ≃ 0

and ϕ = 0 at the upstream plane for those lines. A similar problem arises in cases

with β0 > 0, if an ‘X’ point forms that bears a new magnetic regions beyond it,

disconnected from the plasma sources, as discussed in section 4.3.2. In this case,

we have extended the value of He on the last magnetic line before the ‘X’ point to

this new region. Incidentally, note that if He were constant everywhere (which can

always be achieved with the right choice of ϕ upstream), there would be no uye and

hence no magnetic force on the electron fluid, and the magnetic guiding effect of the

MA would disappear; this conclusion applies to traditional MNs too [20].

The electron model may need to be revisited and include inertia effects, finite

Larmor radius effects, and/or more advanced closure relations based on a kinetic

description, which may play a non-negligible role in some of the regions mentioned

above. Altogether, these effects may modify theHe conservation law and the parallel

and perpendicular transport of electrons. Similarly, the assumption of quasineutral-

ity may need to be dropped in favor of integrating Poisson’s equation, in low density

regions.

Fourthly, the applicability of the 2D planar MA model to describe the actual 3D

MA remains to be assessed. While it is currently expected that the planar model

captures the essence of the mechanisms at play in the actual MA, adding bounds to

the plasma in the third dimension can have additional effects, such as the possible

set up of a polarization Ey field that further changes the axial dynamics due to the

E ×B drift as discussed above. Bounds in the y direction also demand the closure

of out-of-plane plasma currents jy, which will modify the plasma solution and the

plasma-induced magnetic field with respect to the 2D planar ones. Additionally,

due to the additional dimension, the plasma expansion is stronger in 3D than in 2D,

resulting in a faster-decreasing plasma density and electrostatic potential.

Fifthly, it is noted that the present model with cold ions neglects the ion tem-

perature increase that is expected to occur across the shock structure seen in the

solution. Including finite ion temperature and the ion energy equation in the model
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would be a necessary first step to study these aspects consistently. Alternatively,

ions could be modeled as two distinct species, representing the ion beams coming

from each plasma source, and overlapping in the interaction region. Ultimately, the

correct treatment of the collisionless shock requires a kinetic model.

Lastly, we note that while the MA model remains to be validated against exper-

iment directly, it relies on similar hypothesis to those of the MN model of reference

[20]. That model has shown good agreement with existing laboratory measure-

ments in the literature, in particular the plasma expansion and magnetic thrust

generation [93, 94], ion-inertia-driven plasma detachment [95], and the role of the

plasma-induced magnetic field [96].

4.5 Summary

A MA is expected to form when the MNs of two EPTs with opposing polarities

interact. It is also the topology of the magnetic accelerator in the novel MAT

concept. A first model of the external expansion of a MA has been presented, which

already describes much of its interesting plasma physics in spite of its simplifying

assumptions.

The ions are seen to form a free jet that traverses the closed lines of the magnetic

field, even if electrons are fully magnetized. An oblique shock structure forms when

the two beams coming out of the two thruster outlets meet. Electron equations

reduce to algebraic relations in the inertialess, fully-magnetized, polytropic, colli-

sionless limit of the model, and describe how the out-of-plane electron velocity is

fully determined by the magnetic field map and the upstream boundary conditions.

Electron current can only be extracted along magnetic lines that do not connect

the two sources through the symmetry plane (i.e., outer lines), in the limits of

the model. For a given applied magnetic field map, these lines are delimited by a

separatrix line; the location of this separatrix with respect to the thruster outlet

determines the type of MA. In the open MA considered here, a globally-current

free solution of the plasma expansion is possible. If all the lines passing through the

outlet connected with the symmetry plane, no electron current could be extracted in

the strict fully-magnetized, collisionless, planar, β0 = 0 limit of the electron model,

and other mechanisms would need to be included to enable it.

Net positive magnetic thrust is produced from the interaction of the out-of-plane

plasma currents and the applied field. These currents are dominated by the electron

contribution at low and mild ion magnetization strengths. It is observed that most

of the positive contribution to thrust comes from the initial stages of the expansion,

while a small negative (drag) contribution results from the region where the magnetic

lines bend back to the device.
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The plasma-induced magnetic field Bp has been shown to stretch the MA down-

stream when β0 ̸= 0, and to increase the fraction of electron current-carrying mag-

netic lines that pass through the source. The stretched arch has a smaller negative

drag contribution to thrust, and indeed a monotonically increasing magnetic thrust

curve results already for moderate values of β0. Hence, modeling the plasma-induced

magnetic field is essential for the correct description of the MA dynamics. This con-

trast with the case of an axisymmetric MN, where the deformation of the field caused

by Bp plays a rather secondary role in thrust generation at small β0.

We conclude that the present preliminary analysis supports the feasibility of the

MA topology for plasma acceleration and magnetic thrust generation, and therefore,

we identify no showstopper to flying pairs of EPTs with opposing polarities or the

novel MAT configuration. More advanced models and laboratory experiments must

ensue to fully ascertain this claim.
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Chapter 5

Neutral Dynamics and Facility

Effects in Magnetic Nozzles

The following chapter investigates the effect of neutral dynamics and the so called

facility effects on the behaviour of plasma expanding in a cylindrical nozzle. To

begin with, the model used is introduced, this three-fluid model considers several

inter-species collisions. Next, we present the different simulation scenarios that

are considered, these different scenarios include the introduction of neutrals from a

non-ideal source as well as the addition of a background of neutrals reproducing the

existing conditions in the ground testing of EPTs. This way we show that the ion

fluid is not strongly affected in the envisaged operating point in MNs. Attention is

also paid to the effect of these collisions on the momentum of the electrons which

are shown to be affected by the collisions particularly for some electrical boundary

conditions. Moreover, we show strong collisional losses due to inelastic collisions of

electrons with neutral that affect the thermodynamics of the electrons and reduce the

performance of the nozzle. The content of this chapter is a verbatim reproduction

of the submitted article [97] and is one of the contributions of this thesis to the

ZARATHUSTRA project. Kindly excuse any redundant information which might be

present in the former chapters of this work, particularly in the introduction and the

model sections. These offer however, deeper detail into the technicalities of the topic

in question in the present chapter.

5.1 Introduction

Electrodeless plasma thrusters (EPTs) have gained interest from the space propul-

sion community in the last decades thanks to their theorized advantages with respect

to other well-established electric propulsion technologies[2, 17]. EPT devices such as
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the Helicon Plasma Thruster (HPT) [98, 99, 100, 78, 85] and the Electron-Cyclotron

Resonance thruster (ECRT) [15, 87, 101, 102, 50] are now under development.

In these devices, plasma acceleration occurs in a so-called magnetic nozzle (MN)

[103, 20] that, similarly to a de Laval nozzle in chemical propulsion, converts (elec-

tron) thermal energy into (ion) directed kinetic energy. The lack of electrodes and

neutralizing cathode in EPTs offers a number of possible advantages compared to

other, well-established propulsive technologies, such as potentially longer lifetimes,

the possibility to use virtually any substance as propellant [104], simpler scalability

to higher and lower power levels, wider thrust-specific impulse throttleability, and

even the possibility to exert thrust vectoring without moving parts [21].

Several models have been employed to study the expansion of magnetized plasma

in a MN. The most fundamental approach is the continuous kinetic modelling which

solves the Vlasov equation directly and is usually limited to 1D scenarios [105, 38].

To overcome this inherent limitation of continuous kinetic modelling, full particle-

in-cell (PIC) models [106, 107, 108] have been employed, these models are however

usually limited to two dimensional geometries due to their high computational cost.

Another alternative is the hybrid approach in which electrons are modelled as a

fluid while ions and neutrals are modelled as particles [109, 110]. This approach

has proved good agreement with experimental results and even simulations of the

plasma-wave coupling has been achieved [111] . However, parametric studies re-

quire a computationally cheaper option, a role fulfilled by full-fluid simulations in

which one solves the equations for macroscopic balance of mass, momentum and

other momenta of the Boltzmann equation [20, 112, 36]. A good example of this is

DIMAGNO, a collisionless two-fluid model which has been employed to study the

mechanisms for magnetic thrust generation and MN efficiency [20], the detachment

of ions [79], and the effect of the self-induced magnetic field at non-zero plasma beta

[55].

However, while the collisionless assumption is a reasonable one in warm, fully-

ionized plasma jets expanding into vacuum, it is questionable in current EPT lab-

oratory experiments, where the mass utilization efficiency is not high, and where

background pressure can affect the MN-plasma dynamics. The performance of other

EP technologies such as HET has been shown to improve with varying background

pressure [31, 113]. In the case of MNs the understanding of the behaviour of noz-

zle performance with background pressure is yet incomplete. Several experiments

performed at ONERA [114, 26] and Michigan [52] have pointed towards thrust and

efficiency losses due to increased background pressure, the latest authors attributed

these losses to inelastic electron-neutral collisions that reduce available power to

accelerate the ions. From the simulation point of view, Zhou and Sanchez-Arriaga

[115] used a kinetic model to show that the thermodynamics of electrons is only

lightly affected by electron collisionality in paraxial nozzles. Finally, full-PIC simu-

lations [116] have shown performance losses MNs in very poor vacuum conditions;
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however, significant performance losses where not observed at background pressures

comparable to the ones observed in the aforementioned experiments. Despite the

relevance of this work, some points such as the effect of the different collisions on the

thrust characteristics of the nozzle and the comparison with the key experimental

measurements in [52] where not assessed.

Another notable effect that facility testing may have on the expansion of plasma

in the magnetic nozzle is that of finite chamber size. The electrically conducting

wall of the vacuum chamber is expected to change the behaviour of the electron

population. This effect was already mentioned in [20] where it was noted that a

change in the electrical boundary conditions strongly affected the electron current

found in the plume. Some experiments have been performed by Baldinucci and

collaborators [117] where measurements showed that the addition of an electrically

conducting barrier downstream decreased thrust by up to 10%.

The present article expands on the initial work by Ahedo and Merino [20] by,

firstly, modelling the neutral population as an additional fluid and including the

effect of ionization and charge-exchange (CEX) collisions on the heavy species.

This allows us to gauge the importance of collisions in the MN plasma expansion

and the propulsive performances when propellant utilization efficiency is not 100%,

and in the presence of background pressure. The ion velocity distribution function

(IVDF) is estimated in these cases a posteriori, showing the development of a slow,

background ion population. We also go beyond that seminal work by solving the

plasma equations in the peripheral region beyond the last plasma magnetic line

in the MN, observing the buildup of a potential barrier. Secondly, under the as-

sumption that collisions are non-dominant, we evaluate perturbatively the effect of

excitation, ionization, and elastic collisions on the electron fluid, and discuss the

influence of vacuum chamber boundary conditions (metallic or dielectric walls) on

electron streamlines, postulating that this aspect can change the plume globally

and affect its divergence angle; this study is an expansion of the one found in [46].

While a polytropic closure relation is employed in the electron model, the energy

cost of inelastic collisions, and the enhancement of plasma mass flow in the plume,

are taken into account to compute the MN efficiency consistently.

The following sections of this paper are organized as follows. Section 5.2 in-

troduces the three-fluid model, making special emphasis in its improvements with

respect to previous works. Numerical integration for the equations of the model is

tackled in subsection 5.2.3. Section 5.3 describes the simulation setup, presents the

results for the different cases considered, and analyzes the plasma response. Finally,

section 5.4 gathers the main conclusions of the study.
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5.2. Three-fluid Model

5.2 Three-fluid Model

We consider a plasma jet of initial radius R0 composed of electrons (e), singly-

charged ions (i), and neutrals (n). The plasma is assumed quasi-neutral every-

where, ni = ne, as it expands from a set of prescribed upstream conditions, into a

diverging, axisymmetric, applied magnetic field B that can be expressed through

the derivatives of a magnetic stream function ψ,

B = ∇ψ × 1θ. (5.1)

Here we have introduced the unit vector in the azimuthal direction, 1θ. We further

introduce two right-handed, orthonormal vector bases: the cylindrical {1z,1r,1θ},
and the magnetic {1∥,1⊥,1θ}, with 1∥ = B/B and 1⊥ = 1θ × 1∥ in the meridional

plane. Lastly, we also introduce the unit normal pointing in the inward direction at

the boundaries of the domain, 1n. Without loss of generality, we shall assume that

B points downstream at the MN throat.

5.2.1 Ions and neutrals

In the magnetic nozzles of HPTs and ECRTs the energy is transferred to the plasma

in the form of electron thermal energy. Hence, they are characterized by electron

temperatures of the order of tens of electronvolts [118, 119] and ion temperatures of

a fraction of an electronvolt [48] and therefore Te/Ti ≫ 1. For this reason, ion tem-

perature is usually neglected in fluid simulations [20] or considered constant [112].

However, a rising ion temperature is one of the main indicators of collisional effects

in MNs, this is attributed to late ionization in the plume and other collisional pro-

cesses which broaden the ion velocity distribution function (VDF). For this reason

our model includes ionization and charge exchange (CEX) collisions and retains the

equations for ion and neutral internal energy recognizing that the temperature of

neither of the heavy species will play a major role in the expansion.

Under the assumption that the convection of thermal energy dominates over heat

conduction the fluid equations for the conservation of mass, momentum and internal

energy for both species can be written as:
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∂tne +∇ · (neui) = Sion, (5.2)
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Here the term SCEX represents the volumetric rate for CEX collisions and we

have used mn = mi. The expressions for the rates of all collisions included in this

study can be found in the appendix 5.A.

Observe that collisional terms in eqs. (5.4) and (5.7) are not symmetric, this is

due to the fact that collision between species with different fluid velocities tend to

raise both of their temperatures.

We further assume that neutrals are introduced in the domain without any ro-

tation, (uθn = 0), hence, the only mechanism that could induce a rotational velocity

in the neutral fluid is the exchange of azimuthal momentum with ions via CEX

collisions and, as the swirl current (following the notation in [20]) in electron driven

nozzles tends to be small, we disregard the azimuthal component of the neutral

momentum equation.

The neutral density in the former equations has two different origins. Some neu-

trals are introduced in the domain at the nozzle throat simulating a plasma source

with imperfect utilization efficiency. Moreover, we define a background density nb

which we manually set as a minimum density for the neutral fluid. This background

density is defined by choosing a background pressure pb which allows us to fix nb

through an ideal gas law nb = pb/Tb.

To integrate our model it is necessary to impose both boundary conditions (BCs)

and initial conditions (ICs). For the ion and neutral fluids, we impose the values of

all the conserved variables at the inlet, and no BCs at the outlet as the velocities are

supersonic there. On the other hand we impose symmetry conditions on the axis

r = 0.
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5.2.2 Electrons

Electron inertia is assumed negligible, this is equivalent to retaining only zeroth-

order Larmor radius effects. Moreover, a polytropic closure relation for electron

temperature,

Te = Te0(ne/ne0)
γe−1, (5.8)

is imposed, with a prescribed exponent γe. While the polytropic model ignores the

kinetic features of the electron expansion, it is known to be a reasonable closure

to the experimentally observed non-local electron thermodynamics in the MN[92,

38, 81]. Experimental evidence shows that a ratio of specific heats slightly above

isothermal adequately describes the electron cooling rate in many EPTs [44, 45, 120].

On the other hand, kinetic evidence from the work of Zhou [115] shows that electron

cooling is only weakly affected by collisionality in the envisaged ranges of operation

of a magnetic nozzle with polytropic index varying from 1.218 in the collisionless

case to 1.239 in the highest collisionality scenario. Moreover, full-PIC simulations by

Andriulli et al. [116] demonstrated that the potential drop to infinity and therefore

γe is very mildly affected by electron collisions against background neutrals in the

expected ranges of chamber pressure.

The electron continuity and momentum equations then read:

∂tne +∇ · (neue) = Sion, (5.9)

0 = − Te0

nγe−1
e0

∇nγe
e + ene∇ϕ− eneue ×B −meneνeue, (5.10)

where Sion is the ionization source term, and νe represents the effective electron

momentum collision frequency due to elastic collisions (with ions and neutrals) and

inelastic collisions (excitation, ionization). Collisional related parameters are defined

in section 5.A. Dividing by eneB, the latter equation can be cast as

0 = − 1

eB
∇He − ue × 1∥ − χ−1ue, (5.11)

with χ = eB/(meνe) the local Hall parameter, and He the Bernoulli function [20],

He =
γe

γe − 1
Te0

ïÅ
ne

n0

ãγe−1

− 1

ò
− eϕ. (5.12)

Writing ue = u∥e1∥+u⊥e1⊥+uθe1θ and projecting (5.11) along 1∥, 1⊥ and 1θ yields

equations for u∥e, uθe and u⊥e as functions of the gradient of He,

u∥e =
−1

χ−1

1

eB

∂He

∂1∥
, (5.13)

uθe =
−1

1 + χ−2

1

eB

∂He

∂1⊥
, (5.14)

u⊥e =
−χ−1

1 + χ−2

1

eB

∂He

∂1⊥
= χ−1uθe. (5.15)
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In propulsive MNs, electrons must be effectively magnetized for a correct behaviour

of the device, which requires a large Hall parameter, χ≫ 1. Otherwise, the confining

and guiding effect of the MN breaks down [121]. This condition holds in free space

even at low propellant utilization efficiencies in most of the MN, as in the region with

the highest collisionality, i.e. the nozzle throat, electrons are strongly magnetized. It

also holds in a vacuum chamber experiment, provided that the background pressure

is sufficiently low and the relevant mean free paths are long enough. In the far

plume, electron demagnetization can override this condition.

In the collisionless limit (χ−1 = 0) considered in [20], He is uniform along mag-

netic lines by virtue of equation (5.11), therefore the Bernoulli function is only

determined by ψ as He = He(ψ) and uθe is solely dictated by ∇He (which points

purely in the 1⊥ direction and can be expressed as the derivative of He on the

magnetic stream-function ψ),

uθe =
−r
e

dHe

dψ
∼ Te0
eB0R0

, (5.16)

In this strong electron magnetization limit, the maps of He and uθe are fully de-

termined by the upstream boundary conditions alone, and can be computed before

solving any other aspect of the plasma expansion. Furthermore, u⊥e = 0, and u∥e
become uncoupled from the momentum equation and the rest of the problem, ap-

pearing only in the continuity equation, and its steady-state map can be solved for

from it and the corresponding boundary conditions after a solution for ne is found.

Indeed, noting that ∇ ·B = 0,

∂tne +B · ∇
(︂neu∥e

B

)︂
= Sion. (5.17)

This was the limit electron model introduced in [20].

In the present work, in the understanding that χ−1 is small, we also solve the

electron expansion to zeroth order in χ−1. This electron solution, advantageous

from the computational viewpoint, is then used to find the ion and neutral response.

First-order corrections in χ−1 to the electron map are then discussed in section 5.3.4,

following the perturbative approach introduced in [46]. For this approach to remain

valid, we require that u⊥e/u∥e ≪ 1, so that the perturbed electron streamlines do

not deviate substantially from the collisionless ones.

Two different conditions for equation (5.17) are explore, namely one imposing

local current ambipolarity LCA (j · 1n = 0) at the throat, and another imposing it

in the downstream boundary, observe that in the case in which ion magnetization

is low this does not imply that global current ambipolarity (GCA) is satisfied as

mentioned in [20].
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5.2.3 Numerical Integration

At this point, we use equation (5.10) to eliminate the electric potential from the

ion momentum conservation equation (5.3) . This way we can write a set of 9

differential equations for the plasma density, three-dimensional ion momentum, ion

energy, neutral density, two-dimensional neutral momentum and neutral energy,

these equations can be found in the appendix 5.B.

All of these equations are in conservative form, except for the internal energy

equations for ions and neutrals, in which the pressure gradient term in the right

hand side remains. Note that this situation is not solved by using the total energy

equation instead, as in that case the electrostatic gradient term (Joule heating term)

is present in the right hand side instead.

The spatial discretization and numerical integration of the problem follow a

Discontinuous Galerkin (DG) scheme of order p = 1 which is evolved in time with

a strong stability preserving Runge-Kutta (SSPRK) method [65] until steady state

is reached. The problem is discretized on a triangular mesh of variable size. The

cell size is chosen to be a function of dHe/dψ and therefore is finer in the area close

to the throat and becomes coarser downstream and in the side of the plume. The

length of a cell edge is hmin = 0.6 mm in the nozzle throat and hmax = 19 mm in the

downstream upper corner of the domain. The number of cells in the domain is 6017

are used for a total of 162459 degrees of freedom in the problem. The approach is

analogous to the one used in [28], although the problem is now extended to include

the neutral species, ion and neutral temperature, as well as ionization and charge

exchange collisions.

In summary, we write the set of partial differential equations as a single system

in quasi-conservative form:

∂Q

∂t
+∇ · F = G, (5.18)

where

Q =
î
ne, neui,

3
2
neTi, nn, nnun,

3
2
nnTn

ó⊤
,

is the vector of unknowns, F is the flux tensor, and R is the vector containing the

right-hand side forcing terms.

A major distinction with [28] is that here the system of equations is not fully

in conservative form as indicated above, and the volume integral of R requires the

evaluation of gradients of their respective pressures. These terms, while of minor

relevance (the temperatures of ions and neutrals are orders of magnitude below that

of electrons), cannot be adequately evaluated with the current DG discretization, as

elements are not continuous across cell boundaries. In this work we instead project

the pressure of ions and neutrals onto a continuous function space of order 2 and its
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gradient is then evaluated in this space. The numerical tests in the appendix 5.C

verify the suitability of this approach, and show that this projection step recovers

the expected convergence of the solution with element order p and element size h.

In order to initialize the simulation the map of dHe/dψ must be fixed before the

equations for the heavy species are solved. To this end, we calculate analytically the

value of the stream-function ψ for the whole domain. Since, in our model, the ther-

malized potential He and electron azimuthal angular velocity euθe/r = −dHe/dψ

are only functions of ψ, we can fix their values everywhere in the domain by inter-

polation of their values at the inlet boundary.

Then, at t = 0 we initialize the simulation with a low density background ne =

10−6ne0 for the reference simulation while in the other simulations are initialized with

the solution to the reference one. Convergence is reached when the time derivative

of the solution vector calculated as

∑︂
∀ nodes

∑︂
∀i

|Qi,n+1 −Qi,n|
tn+1 − tn

with Qi the components of Q, and subindex n the temporal instant; is smaller

than 10−10. Once steady-state is reached we calculate the solution to the electron

continuity equation using a DG-upwind scheme setting the appropriate boundary

conditions in order to obtain current ambipolarity in the desired boundary.

5.3 Results

5.3.1 Simulation cases

In the following, we discuss the physical and numerical setting for the different

simulation cases. In all simulations, the MN is generated by a circular current of

radius RC = 2R0, with R0 the radius of the plasma inlet, in our case R0 = 1.8 [cm]

which is in the range of common Helicon and ECR sources [44, 52, 50]. Both the coil

and the plasma inlet are centered at (z, r) = (0, 0) and the magnetic field, is chosen

to be 200 G in that point, this value is representative of a 5.8 GHz ECR thruster

[50], nonetheless, it is comparable to other electron-driven MN thruster prototypes

[52, 44]. The applied magnetic field Ba, is depicted in figure 5.1. Moreover, the

electron temperature at the centre of the nozzle is set to Te0 = 10 eV and the

electron polytropic exponent to γe = 1.2, in keeping with the discussion in the

model section 5.2.

The domain of integration is depicted in figure 5.1 along with the different bound-

aries of the simulation in which the BCs are imposed.
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Figure 5.1: Applied magnetic field B. Black lines depict magnetic streamlines, the

thicker line depicts the magnetic streamline up to which 99.8% of plasma is injected.

The purple line depicts the MN throat boundary conditions where plasma enters the

domain, the orange line depicts the symmetry axis while the green lines represent

the supersonic outlet.

In order to define all the boundary conditions we define first the utilization

efficiency with the entrance plasma conditions, as:

ηu0 =
ṁi0

ṁ0

=
ṁi0

ṁi0 + ṁn0

(5.19)

Where ṁs0 is the mass flow rate for species s at the throat.

The values of the different background pressures are chosen to be in the range of

those analyzed by Wachs and Jorns [52]. The values of utilization efficiency range

from a perfect ionization case to an ηu = 0.5 case that is close to the the utilization

observed in some prototypes [50, 16] although higher utilization efficiencies of around

0.6 have been observed [122].

The inlet boundary conditions are:

nα(0, r) = nα010
−3(r/R0)2 ,uα(0, r) =Mα0c̃α(0, r)1z;

Tα(0, r) = 0.078 eV , Te(0, 0) = 10 eV;

ϕ(0, r) = 0; (5.20)

where the sub-index α refers to either ions or the neutrals. Note here that the

relevant speed for ions here is c̃i =
√︁
γeTe/mi while that of the neutrals is c̃n =√︁

(5Tn)/(3mi) both of which are obtained by linearization of the system in equation

(5.18). The ions are introduced with an axial velocity equal to a fraction of their

local sound speed so that the ion Mach number is Mi0 across the nozzle throat.

Plasma is then introduced at the nozzle with a Gaussian density profile which

falls three orders of magnitude across the radius of the inlet. The values at the
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centre of the throat for ion and neutral density are set according to the utilization

efficiency of the source while keeping a fixed mass flow rate of ṁ0 = 0.015 mg/s

of xenon in the throat. As in previous work [28], the Gaussian inlet profile is

extended up to the border of the coil (r = 2R0) to avoid sharp gradients in the

inlet boundary, however the ion flux entering the domain through the boundary

from r = R0 to r = 2R0 represents less than 0.2% of the total flux, and therefore

this does not change noticeably the global dynamics of the nozzle. Additionally,

the neutral background temperature is chosen to be Tb = 900 K. The choice of a

temperature higher than room is influenced by two factors. First, neutrals have a

relatively large residence time in the ionization chamber and are therefore expected

to thermalize with its wall which may be heated due to ion bombardment and other

processes, in addition, the multiple wall-recombination and reionization processes

will also rise neutral temperature.

In order to gauge the effect of background pressure and neutral density we per-

form simulations varying both pb and ηu while keeping all other free parameters of

the simulations fixed. A list of all the simulation cases can be found in the first few

rows of table 5.1 in which the values for ηu and pb are specified. There, simulations

are labelled as R for the reference simulation without background pressure and with

perfect utilization, U1, U2 and U3 designate the simulations with different source

utilization efficiencies, while B1, B2 and B3 designate the simulations with different

background pressures. Finally, simulation UB includes both effects.

The sonic point in the magnetic nozzle of EPTs is usually argued to be located at

the nozzle throat [103]. However, some experimental measurements have shown that

sonic transition happens downstream from the throat [123, 51, 124]. On the other

hand, some simulations claim that the sonic transition is not strongly influenced

by the position of the magnetic throat and can indeed take place upstream from it

[110]. Some collisional simulations only solving the divergent part of the magnetic

nozzle show a local drop in the ion velocity close to the throat [116]. This artifact

is produced by the incorrect matching of the ionization chamber and the plume, in

order to avoid this, Mi0 is chosen such that the expansion is monotonic in the whole

domain, in our case this happens for Mi0 = 0.4. On the other hand, neutrals are

introduced with an axial velocity equal to their sound speed and their density is also

set to a Gaussian falling three orders of magnitude in the side of the nozzle throat.

5.3.2 Response of highly magnetized electrons

As described in subsection 5.2.2, our MN model employs a massless, collisionless

electron solution to integrate the ion and neutral equations. In a latter section 5.3.4,

the leading order corrections due to collisions and electron inertia are evaluated.

The main advantage of this approach is that it allows us to solve the electron
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Simulation R U1 U2 U3 B1 B2 B3 UB

ηu0 1.0 0.9 0.7 0.5 1.0 1.0 1.0 0.5

pb[mPa] 0.0 0.0 0.0 0.0 0.5 2.0 4.0 4.0

ne0[10
17m−3] 3.00 2.73 2.17 1.59 3.00 3.00 3.00 1.59

nn0[10
17m−3] 0.00 1.36 2.73 6.80 0.402 1.61 3.22 6.80

ui(zL) [km/s] 7.399 7.374 7.369 7.363 7.343 7.187 6.983 6.938

mi̇ (zL)/mi0̇ 1.000 1.008 1.023 1.039 1.013 1.056 1.121 1.126

R95%(zL) [cm] 11.78 11.87 11.87 11.96 12.05 12.59 13.50 13.41

P ∗
in [mW] 191.2 163.3 112.4 68.48 191.3 190.5 189.5 68.09

Pcoll [mW] (eq. (5.27)) 0.000 1.523 3.737 4.719 6.148 26.50 56.80 30.81

Pin [mW] (eq. (5.24)) 191.2 164.8 116.2 73.20 197.4 217.0 246.3 98.90

Pcoll/Pin 0.000 0.009 0.032 0.064 0.031 0.122 0.231 0.311

γ̃e (eq. (5.28)) 1.2 1.201 1.203 1.206 1.204 1.218 1.244 1.249

Fi(0) [µN] (eq. (5.30)) 15.78 13.81 10.87 7.92 15.44 14.97 14.45 7.73

Fe(0) [µN] (eq. (5.30)) 46.12 41.91 32.08 22.39 46.61 47.28 48.04 22.6

Fn(0) [µN] (eq. (5.30)) 0.0 0.56 1.68 2.80 0.0 0.0 0.0 2.87

∆Fi [µN] (eq. (5.31)) 70.0 67.8 54.5 40.5 71.8 73.4 74.9 40.11

∆Fe [µN] (eq. (5.32)) -42.9 -39.5 -31.6 -23.4 -43.3 -43.8 -44.5 -23.7

∆Fn [µN] (eq. (5.33)) 0.0 -0.0169 -0.0411 -0.0510 0.278 1.13 2.24 1.04

F [µN] (eq. (5.30)) 89.0 84.6 67.5 50.2 90.9 92.9 95.2 52.6

ηMN (eq. (5.34)) 0.915 0.912 0.851 0.721 0.934 0.897 0.840 0.590

κMN (eq. (5.35)) 0.851 0.951 1.178 1.439 0.889 0.924 0.963 1.418

κP (eq. (5.35)) 1.000 0.991 0.968 0.936 0.969 0.878 0.769 0.689

κF (eq. (5.35)) 1.076 1.075 1.074 1.072 1.085 1.106 1.134 1.207

Table 5.1: Free parameters of the simulation (first four rows) and relevant global

performance parameters. In the fourth line nn,max represents the neutral density

at the center of the throat in simulations U1, U2, U3 and UB and the neutral

background density in simulations B1, B2 and B3, in all cases this is the maximum

neutral density encountered in the domain.
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Figure 5.2: Maps of He and electron azimuthal angular velocity uθe/r fixed by the

throat boundary conditions and the applied magnetic field in the χ−1 = 0 limit.

momentum equation algebraically to find the map ofHe from the upstream boundary

conditions, as this quantity is conserved along magnetic streamlines by virtue of the

collisionless limit of (5.13). In turn, this fixes the electron azimuthal velocity, which

is obtained from (5.14). Figure 5.2 shows the maps of He and uθe, indicating that the

resulting electron azimuthal velocity is positive everywhere in the domain resulting

in a diamagnetic azimuthal current and therefore radial confinement and positive

magnetic thrust [46].

5.3.3 Ion and neutral response

Remarkably, the ion expansion in the collisionless regime (R) and in the various

explored collisional cases (U1, U2, U3, B1, B2, B3, UB) are very similar on first sight.

Figure 5.3 (a) shows the electric potential in simulation UB. As in previous

studies, it is found that the potential drops axially and radially in the main plume.

Here, we find that for the chosen boundary conditions, the potential also grows
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radially in the peripheral region. A low potential region exists between the main

plume and the lateral part. Figure 5.3 (b) shows the ion current density (ȷ̃i) in the

meridian plane. Most of the ion current is carried by the main plume and is inward-

detached with respect to magnetic lines, meaning that the divergence angle of the

former is less than that of the latter. The lower density plasma in the peripheral

region is originated at the lateral of the throat, as we extend the plasma inlet up to

the coil location; and by ionization events taking place in this region, this numerical

artifact is not considered to affect the solution strongly as only 0.2% of the mass

flow at the throat is provided by the periphery of the inlet (radii between R0 and

2R0 ).

Figure 5.3 (c) and (d) show the collisional frequencies for ionization and charge-

exchange. While ionizing collisions are more prominent in the surroundings of the

nozzle throat, they decrease rapidly away from the source. CEX collisions, on the

other hand, remain same-order everywhere in the domain, and thus represent the

main collisional contribution on the heavy particles downstream and in the periph-

ery. Even though it is not shown here, ion azimuthal velocity is negligible compared

to its electron counterpart in all simulations as is expected for Te ≫ Ti when ions

are introduced without rotation[20].

As mentioned before the expansion is very similar in all the simulated scenarios.

To quantify the effect of collisions on the radial behaviour of the plume, we show in

table 5.1 the radius of the streamtube containing 95% of the ion current at z = zL.

This measures the radial expansion of the plume and is seen to increase by almost

15% in the simulations with the highest background pressure.

To further appreciate the effect of collisionality in the expansion we show, in

figure 5.4the electric potential evaluated in two circular arcs at distances 6R0 and

10R0 from the centre of the throat, these arcs are the ones depicted in red in figure

5.3 (a). Radially, all the simulation cases exhibit a potential drop towards the side of

the main plume and a sudden increase in the external part which is similar to struc-

tures observed in several experiments [125, 126]. Specifically, Little and Choueiri

[80] argued that this structure is generated by ions with sufficient radial velocity

overshooting the plasma-vacuum interface unlike the strongly magnetised electrons

leading to a positive space-charge build-up and that finite electron Larmor radius

effects (FELR) reduce the onset of this potential wall. In our case, this happens

due to the ions coming from the side of the throat reaching the peripheral region

leading to a spuriously high plasma density there. We also observe that increasing

the presence of neutrals both through an increase in pb and a decreased ηu reduces

the lateral potential drop. This decrease is more apparent in simulations B3 and

UB than in U3 as in this last case neutral density decreases very rapidly away from

the source and therefore collisional effects are only relevant in the surroundings of

the throat. For this same reason, simulations B3 and UB show very similar profiles,

the strong rarefaction of the neutrals coming from the source makes background
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neutrals dominant in simulation UB.

As expected from the setup of the different simulations, neutrals behave very

differently in each of the scenarios. Figure 5.5 (a) shows the on-axis neutral density

normalized with its maximum value. Simulations B3, U3 and UB show, respectively,

an essentially constant neutral background, the expansion of injected neutrals and

the injected neutral density decreasing until the background density dominates.

On the other hand, plasma density in figure 5.5 (b) is seen to follow the same

trend in all simulations, this agrees well with [116]; as ϕ is uniquely determined by

the ratio ne/ne0 in equation (5.12) this implies the potential fall is very similar in

all cases. Ion velocity is seen to increase to roughly seven times its initial value as

potential energy is converted into ion kinetic energy, however, CEX collisions tend

to slow down the ion fluid, for this reason, velocity profiles are seen to follow a trend

similar to the radial potential in figure 5.4, this is, we see almost matching tendencies

for simulations R and U3 and for simulations B3 and UB respectively, with the last

two showing a 6% decrease in ion velocity with respect to the reference one, this

does not imply a loss of momentum in the plasma as the loss of ion momentum

via CEX leads to an equal gain of momentum by the neutral fluid. In table 5.1

we clearly observe that terminal velocity decreases monotonically with increasing

pb and decreasing ηu. This loss in ion velocity is noticeably smaller than the one

reported in [52] which is of the order of ∼ 20% for similar background pressures. PIC

simulations[116] also observe a higher velocity loss of ∼ 22% albeit using a higher

background pressure of 10 mPa, higher power input and electron temperature. As

a matter of fact extrapolating our data to the pressures used in the aforementioned

study yields a decrease of 14% in final ion velocity. This is mainly due to the transfer

of ion momentum to the neutral fluid via CEX collisions and to a minor extent due

the addition of slow ions by virtue of ionization collisions. This gain in ion mass

due to late ionization in the plume is given by

ṁi

ṁi0

= 1 +
1

ṁi0

∫︂
Ω

SionmidΩ, (5.21)

where ṁi is the integral of the ion flux leaving the domain and ṁi0 is the ion mass

flow entering the domain at the throat given. This gain in ion mass flow is observed

to be up to 12% of the initial mass in the scenarios with the highest background

density, here Ω represents the whole domain.

Finally, in figure 5.5 (d), we plot the temperature of the ion fluid. Clearly

ions remain cold in all cases in comparison to the electron fluid, the highest ion

temperature is reached in simulation B3 with Ti,max = 0.67 eV compared to an

electron temperature of 4 eV in that region. This ion temperature are comparable

tot hose observed by [48]. Neutral temperature, on the other hand, is lower than

1100 K in all the simulated scenarios.
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Figure 5.3: Map of electric potential ϕ, ion current in the meridian plane and ion-

ization and CEX collision frequencies for the UB simulation. Magenta lines depict

the streamlines of ion current.
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Figure 5.4: Electric potential measured in the arches depicted in figure 5.1 for

simulations R, U3, B3 y UB.

5.3.4 Role of collisions on the electron fluid

The collisionless electron model has allowed us to find an algebraic electron solution

as in [20]. We next revisit this assumption discuss the effect of collisions on the

geometry of electron streamlines, on the stream-wise conservation of He, and on the

the electron heat flux at the throat,.

In order to evaluate the validity of our approach with the electron solution we

come back to equations (5.14) and (5.15). We recall that the collisionless model

yields uθe according to equation (5.16), and u⊥e = 0. The inclusion of weak collisions

adds a correction to this solution, scaling with the inverse Hall parameter χ−1 as:

∆u⊥e = χ−1uθe ∼
meνeTe0
e2B2

0R0

, (5.22)

∆uθe = −χ−2uθe ∼
m2

eν
2
eTe0

e3B3
0R0

, (5.23)

where uθe on the right hand sides is the one corresponding to the collisionless solu-

tion. For reference, figure 5.6 displays the map of χ−1 in the UB simulation. This

parameter remains small everywhere, even in this low-utilization and relatively-large

background pressure case. Equation (5.22) states that electron collisionality induces

a first order correction ∆u⊥e that points radially outward, i.e., it works toward in-

creasing the plume divergence angle [46]. The correction ∆uθe is only second order,

and implies a negligible decrease of uθe in the range of interest.

We shall therefore only discuss the effect that ∆u⊥e has on the expansion and

the divergence of the plume this was already partially assessed. Indeed, this effect

depends on the tangent ratio ∆u⊥e/u∥e, which can be assessed using the u∥e solution

of the collisionless model. Here we remind the reader that u∥e depends largely on

the boundary conditions used to solve the electron continuity equation (5.9) [20].

To illustrate this, we consider two distinct boundary conditions of interest with the
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Figure 5.5: On axis values for neutral density, ion density, ion velocity and ion

temperature. Colour code is the same as in figure 5.4.
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Figure 5.6: Inverse of electron Hall parameter for simulation UB withpb = 4 mPa

and ηu = 0.5 and a maximum magnetic field of 200 G in the center of the nozzle

throat.

simulation UB : (1) local current ambipolarity (LCA) conditions imposed at the MN

throat, representative of the operation of a short plasma source firing in space, and

(2) LCA imposed at the downstream and lateral boundaries, representative of a

device operating in a vacuum chamber with dielectric walls (or of a plasma source

with MN used for material processing applications) [20]. Since LCA is not satisfied in

the bulk of the plasma plume (because ions separate inward from the magnetic lines

while electrons remain magnetized), these two conditions result in rather different

maps of u∥e: conditions (1) lead to a relatively large u∥e in the plume periphery,

whereas conditions (2) concentrate a larger u∥e in the core of the exhaust.

Consequently, the tangent ∆u⊥e/u∥e remains rather small in the whole simulation

domain in case (1), while a noticeable tangent develops in the plume periphery

(where plasma density is nevertheless small) in case (2). This is an indication that

a MN operating in free space and in a vacuum chamber can differ in the resulting

plasma divergence angle, especially if the vacuum chamber wall material imposes

the local current ambipolarity downstream. These two cases are depicted in the

first row of figure 5.7 which shows the in-plane electron current ȷ̃e = −eneũe; the

resulting total plasma currents, ȷ̃ = ȷ̃e + ȷ̃i are shown in the second row. It can be

noted that the magnitude of ȷ̃e (and, accordingly, ȷ̃) is large in the periphery of case

(1), as dictated by the boundary conditions at the throat; as the plasma density

in this regions is low, this translates into a few electrons having a large u∥e in this

region [20]. In contrast, ȷ̃e and u∥e are negligible in the periphery in case (2). The

geometry of the j̃ lines in case (2) is the consequence of the rectangular shape of

the domain, as the boundary conditions demand that these lines be tangent to the

downstream and lateral edges (indeed, the change of behaviour across the magnetic

lines that connect to the corners of the domain, in white, is noticeable).
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Figure 5.7: In-plane electron and total currents in simulation UB with ambipolar-

ity imposed at the throat (left column) and ambipolarity imposed in the outflow

boundaries (right column). In the right column white lines depict magnetic lines

crossing the vertices of the domain.

With regards to the validity of using the collisionless electron solution to deter-

mine the electron properties and the electrostatic potential map ϕ, we conclude that

boundary conditions of type (1) are better suited for this type of approximation,

while the accurate solution of plasma expansions under type (2) conditions likely

requires either to include this correction iteratively into the electron maps, or a

complete, collisional electron model. Type (1) conditions better approximate those

of a plasma plume expanding into space, although we clarify that the boundary

conditions to be imposed in that case do not necessarily need to enforce LCA at the

throat: the only strong requirement is that of global current ambipolarity (GCA),

i.e., that the integral at the exit section of j̃ vanish. We also conclude that the effect

of collisions is expected to lead to a larger plume divergence increase in situations

better described by conditions (2).

Analyzing the scaling of equations (5.22) and (5.23) we observe that the relevant

ratios for both collisional corrections ∆u⊥e/u∥e ∝ χ−1
e B−1

0 and ∆uθe/uθe ∝ χ−2
e scale

with the squared inverse of B0; observing that the maximum value of χ−1
e is around

10−3 we conclude that a reduction of one order of magnitude in B0 would make the

perpendicular drift of the electrons comparable to their parallel velocity. This would

imply B0 ∼ 20 G which is, in fact, a low magnetic field for the typical operation
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Figure 5.8: Axial value of He accounting for collisions in simulation UB with am-

bipolarity imposed in the downstream boundary. Colour code is the same as in

figure 5.4.

conditions in EPTs, however the accumulated effect of the deflection of electron

streamlines could appear at higher magnetic fields. Even lower values of B0 would

be necessary to affect the azimuthal velocity of electrons noticeably.

The second effect of collisions on the electron model stems from the parallel

dynamics, as shown in equation (5.13): when parallel collisionality is included, He

is not conserved along magnetic streamlines anymore, and moreover, u∥e becomes

weakly coupled with the rest of the problem. The decrease of He along magnetic

lines has the double effect of modifying uθe, which depends on the perpendicular

gradient of He, and reducing the total potential fall across the nozzle. These effects,

however, are very minor in the simulation cases explored, as can be inferred from

figure 5.8 which presents the variation of He along the axis of the MN (with LCA

imposed downstream, which gives a larger decrease). The small effects of collisions

on He are more prominent when background pressure is included, as a matter of fact

one can observe that there is a faster decrease near the throat which does not plateau

in the simulation domain when background density is included. The smallness of

variation validates the modelling approach followed in this work for electrons.

Finally, another assumption of the electron model is that of negligible inertia

(which are first-order finite Larmor radius effects). Given that uθe can be large and

that for boundary conditions of type (1) the parallel electron velocity u∥e can become

large in the periphery, it is reasonable to question the validity of this assumption.

To gauge the influence of finite electron inertia, we proceed similarly to [127] and

compute the following normalized electron inertia term from our zeroth-order solu-

tion:

ϵiner =
|∇(meneueue)|

|∇pe|
.

This compares locally the effect of electron inertia against the electron pressure force.

This term is shown in figure 5.9 for simulation UB and for both electron boundary
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Figure 5.9: Absolute value of inertial terms of electron momentum equation.

conditions. In the case with LCA imposed at the throat, εiner is only greater than

10−3 in the periphery of the plume, where the plasma is very tenuous and electron

pressure negligible. As the plasma density is very low in this region, this error has

a presumably small effect on the computed results. In the case in which LCA is

imposed in the downstream boundary, ϵiner is seen to reach values of the order of

10−3− 10−2 already in downstream region of the main plume, indicating that, while

still negligible, will affect the plasma expansion in the main jet earlier than in the

upstream LCA case. In passing, we note that in order to make a comprehensive

discussion of FLRE one would need to asses the effect of the so called gyroviscous

force which is simply the divergence of the off-diagonal terms of the pressure tensor

in a magnetized plasma also referred to as the gyroviscous tensor. A full study of

this effects is not performed here as the complexity of these terms deserves a detailed

study [128].
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5.3.5 Effect of collisions on the electron power balance

The total power flowing into the MN Pin is the sum of the convective power carried

by each of the species and the electron heat-flux at the throat,

Pin = Pconv +Qe0, (5.24)

where the convective power is:

Pconv =

∫︂
S0

5

2
ne0Te0uzi0dS∫︂

S0

ï
mi

2
ne0u

3
zi0 +

5

2
ne0Ti0uzi0

ò
dS∫︂

S0

ï
mi

2
nn0u

3
zn0 +

5

2
nn0Tn0uzn0

ò
dS (5.25)

Note that the contributions due to the ion and neutral temperature, and due to

neutral kinetic energy, are typically negligible.

From the viewpoint of electron thermodynamics, it is noteworthy that the cho-

sen polytropic electron cooling model implies the existence of a nonzero heat flux

Qe into the plume that maintains that electron temperature profile in the plume,

which is greater than in the adiabatic limit and can be calculated from the total

balance of power in the plume [92], this heat flux corresponds to the first term in

equation (5.26). In this study we are assuming that the the polytropic index and

electron temperature at the throat are kept constant in all of the simulated sce-

narios. However, the existence of inelastic collisions in the plume removes energy

from the electron population. The balance of power demands that the value of the

electron heat flux at the MN entrance increases with respect to the collisionless case,

to maintain the same γe and Te0,

Qe0 =
3

2
Te0ηu

ṁ

mi

Å
5/3− γe
γe − 1

ã
+ Pcoll (5.26)

where the energy lost to inelastic collisions in the plume can be calculated as:

Pcoll =

∫︂
Ω

SionEineldΩ. (5.27)

This power loss of the electron fluid is gauged a posteriori in our work and is, in

the highest loss scenario, up to 31% of the inlet energy flux. Alternatively, using

equation (5.26) , defining Q̃e0 = Qe0 −Pcoll and assuming the input power had been

kept constant, power balance would require:

Q̃e0 =
3

2
Te0ηu

ṁ

mi

Å
5/3− γ̃e
γ̃e − 1

ã
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and thus we can find the effective polytropic cooling exponent of the expansion:

γ̃e =

5 +
2miQ̃e0

Te0ηuṁ

3 +
2miQ̃e0

Te0ηuṁ

, (5.28)

which is reported in table 5.1. This computation allows us to assess what is the

expected change in the polytropic index as the importance of collisions in the plume

varies; we note that γ̃e increases slightly with ηu0 and pb, indicating that, while

minor — values in all the investigated scenarios are in the range of those reported

in the literature [120]— collisions displace this parameter away in the direction of

the adiabatic limit γ̃e = 5/3.

With this variation in mind, we can now assert what would be the effects of

inelastic collisions, if we had fixed Pin rather than Te0 in our simulations.

As Pcoll/Pin increases, the initial electron temperature Te0 would need to decrease

to maintain the power balance. Additionally, the larger polytropic index γ̃e would

lead to a faster drop of the electron temperature downstream and a reduced potential

drop to infinity, which is

∆ϕ = − γ̃e
γ̃e − 1

Te0
e
, (5.29)

thus reducing the capability of the nozzle to accelerate the ions, and ultimately,

thrust. As a matter of fact, for simulation UB this would imply e∆ϕ/Te0 ≃ −5 in

comparison to a value of ≃ −6 in simulation R. In our Te0-constant simulations, this

effect inelastic energy losses on thrust is not present, as Pcoll is simply compensated

by the larger Pin to keep the electron temperature at the entrance constrained. Nev-

ertheless, the relevance of this balance is evident in the efficiency figures computed

in section 5.3.6.

5.3.6 Propulsive performance

The sum of the steady-state momentum conservation equation for each species(5.10),

(5.3) and (5.6) leads to an equation for the conservation of total momentum in the

nozzle:

∇ · (neuiui + nnunun + p) = ne(ui − ue)×B,

where p = pe + pi + pn is the total pressure in the plasma. The integral of the axial

component of this equation renders the total thrust produced by the nozzle up to
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the end of the domain:

F = F (0) + Fmag

=

∫︂
S0

(mineu
2
zi +minnu

2
zn + pe + pi + pn)dS

+

∫︂
Ω

(−jθBr)dΩ, (5.30)

This is, thrust can be seen to be the sum of two contributions, the internal thrust

produced in the source and equal to F (0) and the external thrust produced by the

magnetic force that the plasma exerts on the coils of the thruster. Both of this

contributions can be further decomposed in the different species. The share of the

external thrust for each species is given by:

∆Fi =

∫︂
Ω

(−ene1z · ∇ϕ+ jθiBr

+ Sionmiun + SCEXmi(un − ui))dΩ (5.31)

∆Fe =

∫︂
Ω

(ene1z · ∇ϕ+ jθeBr −meneνeue)dΩ (5.32)

∆Fn =

∫︂
Ω

(−Sionmiun − SCEXmi(un − ui))dΩ (5.33)

These contributions can be found in table 5.1. We observe that, due to the subsonic

velocity of the ions at the throat, the internal thrust is mostly delivered by the

electron pressure with the neutral contribution being one order of magnitude smaller

even in the lowest utilization scenario. The working principle of the magnetic nozzle

observed in [20] holds in all the simulation cases: the flux of electron momentum

decreases during the expansion due to their loss of thermal energy which, in turn, is

converted into ion kinetic energy via the ambipolar electric field. For lower values

of ηu0, both ∆Fe and ∆Fi are seen to decrease in magnitude due to the reduction

in available energy in the form of electron pressure. Increasing pb on the other

hand, results in an augmented effective mass flow rate of ions and electrons due

to ionization, which leads to an increase in their momentum, even if ion velocity

is reduced. Neutral momentum gain is always small compared to the electron and

ion one being essentially unaffected by ηu0; however, when background pressure is

increased, the transfer of momentum to neutrals via CEX is evidenced. Indeed,

CEX collisions do not directly incur in a loss of thrust as suggested in [116], since

they merely transfer momentum from the ions to the neutrals. CEX collisions cause

the entrainment of neutrals by the ions, and has the same effect as an increase in

the total mass flow (total thrust increases, while ion velocity decreases).

We remark that our results predict the increase of thrust evaluated at the end

of the domain F (zL) with increasing pb. We find that this increase is contingent on

keeping Te0 constant in our parametric analysis. As indicated in section 5.3.4, as ηu0
is decreased and as pb is increased, this requires increasing the power input to the
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device. Keeping Pin constant instead would result in a different behaviour of F (zL).

This may explain why finding experimental trends with pb is a delicate matter,

as they may depend on the detailed power balance of each setup. Indeed, thrust

increase with pb is reported in Hall thrusters as a steady discharge voltage can be

maintained during operation [129], while the contrary is found in EPTs [114, 52, 26].

A more robust performance figure that is not affected by what is constrained to

be constant in the analysis is the MN efficiency, defined as

ηMN =
F 2

2ṁ0Pin

. (5.34)

Crucially, ηMN decreases in all simulations with the introduction of neutrals from any

source, either due to an incomplete utilization at the entrance, or due to background

pressure. In order to analyze the different mechanisms of performance loss in the

nozzle we expand this efficiency as

ηMN =
ṁi0

ṁ0

P ∗
in

Pin

F 2

F 2
i

Fi
2

2ṁi0P ∗
in

= ηu0κPκFκMN , (5.35)

where thrust forces are evaluated at zL, and P ∗
in = Pin − Pcoll is the inlet power

disregarding collisional losses. In the factorization shown in 5.35 κF is the fraction

of the force carried by the ion fluid while κMN incorporates several aspects of the

ion acceleration such as the divergence and the dispersion efficiencies.

This factorization lets us identify two different trends. In the first ones, the re-

duction in efficiency is produced by the drop in ηu. This is, even if the ions expelled

by the source are accelerated efficiently (κMN increases while κP and κF stay rea-

sonably unchanged) these ions are not accelerated efficiently enough to compensate

for the loss of ionization in the source. On the other hand, in the simulations with

increasing pb, κF is seen to grow when raising chamber pressure, this is, the ions

the fraction of the force exerted by the ions is seen to decrease as the neutrals are

entrained by CEX collisions; moreover, κMN is seen to increase due to the increased

mass flow of plasma which is strongly related to the enhanced utilization efficiency

given by (5.21). This effect might be responsible for the rise in performance in Hall

effect thrusters [31] in poor vacuum conditions, however, in MNs the power needed

to sustain the discharge grows quickly with background pressure and therefore the

term κP decreases hindering the efficiency of the nozzle [114, 52].

Therefore, the decrease of efficiency can be attributed to inelastic collisions in-

creasing severely the power needed to sustain discharge while the increase in mag-

netic thrust due to collisions does not increase enough to compensate this effect.
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5.3.7 Ion distribution Functions

Some helicon thruster experiments with non-negligible background pressure show

that the ion velocity distribution function (IVDF) is double-peaked [130, 52, 131].

The main peak is produced by the primary or beam ions expelled directly by the

source, while a lower energy peak appears due to late ionization in the plume and

other collisional effects in the plume region, which depend on the chamber pressure

an the initial utilization efficiency. In some cases and depending on the position in

the plume, the slow ions may become predominant [52].

Here, we present a method to estimate the IVDF of the ions that underwent

collisional processes in the nozzle. This method is, of course, not self-consistent as

the distribution function is a fully kinetic feature that can only be resolved with

kinetic models. It is, however, an interesting addition to our analysis with a com-

putationally cheaper fluid model.

We limit our discussion to the axis (r = 0). The rate at which slow ions

are produced due to ionization and charge-exchange collisions is given by S(z) =

Sion(z, 0) + Scex(z, 0), per unit volume and unit time. Slow ions created at a po-

sition z reach a downstream measurement point zm with a velocity v given by

v2 = 2e[ϕ(z) − eϕ(zm)]/mi. This expression sets a univocal relation between v

and z, and differentiating we find vdv = eϕ′(z)dz/mi. Then, the flux of ions gi(v)

at the measurement point satisfies the 1D continuity equation

gi(v)dvdAm = S(z)dzdA, (5.36)

where dA is the area of an infinitesimal streamtube, and dAm its corresponding area

at zm. Assuming for simplicity that the generated slow ions accelerate downstream

and expand like the corresponding magnetic tube, dAm/dA = B(zm)/B(z), and

using the relation between dv and dz through ϕ′,

gi(v) =
B(zm)

B(z)

mivS(z)

eϕ′(z)
. (5.37)

This is the slow ion flux distribution function that a device like a retarding potential

analyzer can measure in the plume of a MN. The corresponding density distribution

function at point zm is then:

fi(v) =
B(zm)

B(z)

miS(z)

eϕ′(z)
(5.38)

Figure 5.10 shows the distribution functions for ions obtained as described above for

the simulations with varying background pressure, along with the VDF of a drifting

Maxwellian with total density and velocity equal to that of the ions at zm = zL and

temperature equal to their initial temperature. We observe that, in simulation B3,

the maximum in the distribution of slow ions is one order of magnitude smaller than

that of fast ions.
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Figure 5.10: Recovered distribution functions at z = zL. Simulations B1, B2 and

B3 are represented by red dotted, dashed and solid lines respectively while the blue

dotted, dashed and solid lines show simulations U1, U2 and U3, respectively. The

black line represents the VDF of a drifting Maxwellian corresponding to the injected

ions in simulation R.

All simulations with collisions show that fi increases near the beam velocity.

These ions are created by the high collisionality around the nozzle throat where

plasma density is highest and are, in fact, responsible for the slight warming of the

ion fluid observed in simulation U3 (see figure 5.5). This increase is the only remark-

able feature in simulations U1-U3 without background pressure: the net effect of

collisionality in these cases is to skew the IVDF of the beam toward lower velocities,

what is equivalent to having a wide effective ionization region that extends from

inside the source to the near plume. However, in simulations with background pres-

sure, the IVDF presents a secondary peak at low velocities. Indeed, these are ions

that result from the sustained ionization and charge-exchange collisions throughout

the plume, this is observed experimentally in [52].

We note however that, in our estimation of the IVDF at the end of the expansion,

slow ion populations are seen to be one order of magnitude less prominent than the

fast ions even in the highest background pressure scenario at 4 mPa. This contrasts

with the measurements of [52] where, downstream the slow ions are comparable to

the fast ion beam coming from the source even with background pressures of 1.73

mPa. This difference can be attributed to the paraxial expansion we have assumed

for the slow ion population, with dAm/dA = B(zm)/B(z).

5.A Collision models

The simplified collision model employed in this work includes ionization, excitation,

ion-neutral charge exchange, electron-ion and electron-neutral. In the following we

describe the models used for the cross section of the different collisions included in
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this work on each species. Following [132] we take the ionization source term to be:

Sion = neνion = nennc̃eσion (5.39)

with c̃e =
√︁

8Te/πme and cross section

σion = σion0(1 +
TeEi

(Te + Ei)2
) exp(

−Ei

Te
), (5.40)

where Ei is the first ionization energy for xenon (12.1 eV) and σion0 = 5× 10−20m2.

On the other hand, the source term arising from charge exchange collisions reads

[133]:

SCEX = nνCEX = nnncinσCEX , (5.41)

with cin = |ui − un| and the collision cross-section given by:

σCEX = σCEX0

Å
1− 0.2 log10

cin
1km/s

ã
, (5.42)

where σCEX,0 = 81× 10−20m2.

We gauge the effect of collisionality in the electron momentum a posteriori. To

this end, elastic electron-ion and electron-neutral collisions as well as ionization, and

excitation collisions could be included in the electron momentum equation. However,

the collisional rates of excitation and ionization are observed to be at least one order

of magnitude smaller than those of elastic collisions [108] and therefore we take:

νe ≃ νen + νei (5.43)

These collision frequencies are taken from [132] and [134] respectively:

νen = nnceσen with σen = 27× 10−20 m2, (5.44)

νei = neRei, with
Rei

10−12m3s−1
=

Å
2eV

Te

ã3/2
ln Λ, (5.45)

log Λ ∼ 9 +
1

2
log[

Å
1018m3

ne

ãÅ
Te
1eV

ã
]. (5.46)

Finally, the effective electron energy loss due to inelastic collisions —ionization and

excitation— is grouped together and taken to be:

Einel = Ei

ï
2 +

1

4
exp

Å
2Ei

3Te

ãò
. (5.47)
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5.B Full model equations

The ion and neutral equations to be solved by the model are the following:

∂tne +∇ · (neui) = Sion, (5.48)

∂tneui +∇ · (neuiui +
1

mi

ne(Ti + Te)) =
ene

mi

(ui − ue)×B + Sionun + SCEX(un − ui)

(5.49)
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2
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2

ò
(5.50)

∂tnn +∇ · (nnun) = −Sion, (5.51)

∂tnnun +∇ · (nnunun +
1

mi

nnTn) = −Sionun + SCEX(ui − un) (5.52)
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2
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ã
+∇ ·

Å
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2
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ã
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− Sion
3

2
Tn + SCEX

ï
3

2
(Ti − Tn) +

mi

2
(ui − un)

2

ò
(5.53)

Note that the electron azimuthal velocity appearing in (5.49) is obtained from

the azimuthal electron momentum equation in the collisionless limit (5.16).

5.C Cell size, order and domain convergence

Discontinuous Galerkin methods are, by construction, locally conservative for sys-

tems of hyperbolic equations [39]. However, as explained previously, we have intro-

duced some minor, yet non-conservative terms in the discretization of the energy

equation for both ions and neutrals 5.2.3. In this regard, our integration method

departs from the typical DG methods and therefore we find necessary to check the

effect of h (cell size) and p (polynomial order) refinement in our solution. To this

end we run simulation UB in a smaller 5 × 3 (in units of R0) domain with three

different cell sizes and for polynomial orders 0 and 1. We then run a fifth simulation

with an even finer cell size and order 1 elements, and take that solution as exact.

In table 5.2 we show the global L2 error of the different simulations. We observe a

convergence rate of 1.6 for the order zero discretization and 2.2 for the order one

discretization; the expected asymptotic convergence rate for DG methods isO(hp+1).

Furthermore, we test the possible effect of a domain size change by running

simulation UB on a 10R0× 10R0 domain with equal cell sizes as the original. Table

5.3 shows the final velocity and electric potential for the two domain sizes evaluated

in the axis at z = 10R0. The change among them is around 2% for the electric
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Polynomial degree Cell size L2 error Convergence rate

0

0.2 0.0041

1.60.15 0.0025

0.1 0.0014

1

0.2 0.0025

2.20.15 0.0013

0.1 0.00053

Table 5.2: Summary of convergence results for cell size and polynomial degree.

Domain size
Percentage change

10× 10 15× 15

eϕ/Te0(z = 10R0) -3.48 -3.42 1.7 %

uzi/cs0(z = 10R0) 2.422 2.430 0.32%

Table 5.3: Effect of domain size on main plasma variables.

potential and 0.3% for the final velocity, so we consider the domain size to play a

small effect on the solutions discussed in the main text.

5.4 Summary

A two-dimensional, three-fluid model based on discontinuous Galerkin finite ele-

ments has been used to simulate the effects of non-ideal propellant utilization at

the source ηu0 and background pressure pn on the plasma expansion in a MN. Ion

expansion is seen to change little in the range explored; the main effect of collisions

with neutrals are a mild decrease in final ion velocity and a small increase of di-

vergence angle. Ions are seen to develop some temperature due to collisions with

neutrals, up to ∼ 1 eV in one of the simulation cases; an estimation of the resulting

ion velocity distribution function has revealed the formation of a low-energy ion

population, with distinct characteristics when varying ηu0 or pb. These effects are

consistent with experimental observations [52] and are more marked in those cases

that feature a background pressure, compared to those with an imperfect utilization

efficiency. Indeed, in simulation UB, the role of background neutrals outweighs that

of the neutrals coming from the source, whose effect is essentially restricted to the

near plume.

One should analyze the effect of ion-neutral collisions according to their type

(ionization, CEX) and the origin of the intervening neutrals (imperfect utilization,

background density). The effect of near plume ionization of neutrals escaping from

the source can be assimilated to a late increase in utilization efficiency. However, ions
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generated outside of the source do not see the full potential drop, and are therefore

less accelerated by it, lowering the fluid velocity of ions. Analogously, CEX collisions

with escaping neutrals transfer momentum from the ion fluid to the neutral fluid, and

play a similar role to having an increased ion mass . The momentum of the resulting

fast neutrals contributes to thrust, while the resulting slow ion can re-accelerate by

the remaining potential drop, and continue to contribute to propulsion. We note,

nevertheless, that slow ions in the plume (be they the result of ionization or CEX)

are prone to be accelerated radially faster than ions, and thus raise the ion fluid

divergence angle. On the other hand, when the new ions from ionization or the

fast neutrals from CEX come from the background density, they provide a ‘free’

additional mass flow rate to the jet, and can affect the conclusions of experimental

studies if this effect is not taken into account.

Collisions are seen to affect somewhat the electron-confining potential barrier

that exists at the plume edge, lowering its strength. Such barrier, which requires

modelling the main and the peripheral plasma to be successfully studied, has been

observed experimentally[80]. While our simple electron model only takes into ac-

count collisions perturbatively, our analysis has shown that electron streamline di-

vergence is expected to increase due to collisions, albeit only minimally for upstream

LCA boundary conditions (the ones that more closely resemble in-space operation).

The effect becomes more noticeable at rather low magnetic field strengths and for

LCA conditions downstream (representative of a plume expansion limited by a di-

electric wall). This last aspect highlights the role another facility effect often disre-

garded, namely the influence of the vacuum chamber walls and their nature. On the

other hand, the main assumption of our model (constant He along electron lines)

seems robust in the parametric space considered here.

Collisions with neutrals lower the performance of the MN, in terms of their ηMN

as defined in equation (5.34). This is in spite of the apparent rise of thrust force

that originates in the extraordinary plasma generation that occurs in the plume, for

a fixed value of the electron temperature upstream, Te0. This increase is counterbal-

anced by the larger power expenditure incurred into, due to the inelastic collisions

(which can also be interpreted as an increase of the polytropic electron coefficient

with collisions). This trend allows us to conclude that collisions with neutrals (re-

gardless of their origin) are detrimental for MN operation, and this may have an

impact in interpreting existing laboratory experiments, especially when the back-

ground pressure is not sufficiently low to allow neglecting its effects.

The present model offers the possibility of “translating” laboratory MN exper-

iments to in-space conditions, effectively discounting (some of) the facility effects.

This could be accomplished by, first, fitting the model inputs to reproduce the labo-

ratory measurements under a given background pressure, and then, carrying out the

same simulation for an identical plume expanding into vacuum. This promising line

of work is left for future research. Likewise, posing a complete electron model that
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Chapter 5. Neutral Dynamics and Facility Effects in Magnetic Nozzles

does not solve electron collision effects perturbatively and explores other closure

relations beyond the polytropic assumption (perhaps at the heat flux level) should

be a next step in the modelling of MNs.
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Chapter 6

Conclusions

To conclude this work we gather here the main results of the thesis. A two-

dimensional planar/axisymmetric multi-fluid code, named POSETS, has been devel-

oped for the simulation of the steady state behaviour of the magnetic nozzle in

electron driven Electrodeless Plasma Thrusters. The models included in the POSETS

code are based on the slow dynamics drift-diffusion approximation for the elec-

tron fluid and can be easily extended to include several physical mechanisms that

have been proven to be of importance in the characterization of EPTs. This code

harnesses the capabilities of the FEniCS [69] library in order to build and solve Dis-

continuous Galerkin (DG) discretizations of the model equations. These methods

have become increasingly popular, particularly in the realm of computational fluid

dynamics (CFD) thanks to the their local conservation properties, their convenience

for the solution of convection-dominated problems, their compact stencil which is

limited to the neighbouring elements and the ease in which hp-adaptivity is per-

formed. Finally, the DG method is able to handle discretizations over unstructured

grids, this property is particularly interesting in the simulation of plasma plumes as

different regions exhibit a wide range of gradients and length scales. The code was

verified against known fluid dynamics and plasma solutions verifying the effect h−
and p− refinement on the error.

Chapter 4 presents the first simulations, to the best of the authors knowledge, of

plasma expansion in a magnetic arch configuration. The results demonstrate that

a free ion beam can be extracted from the source and expanded into a vacuum.

Near the symmetry plane, an oblique shock forms, raising the electric potential and

slowing the ion fluid. Plasma expansion initially resembles that of an axisymmet-

ric nozzle, but the interaction of ion streamlines with the arch’s closed geometry

introduces a paramagnetic drag force in the shock region. Despite this, net posi-

tive thrust is achieved through the interaction of plasma currents with the applied

magnetic field. Incorporating the self-induced magnetic field reveals that a the

plasma-induce magnetic field pushes against the imposed magnetic lines, reducing

drag and enhancing thrust. Magnetic thrust increases steadily even for moderate β0
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values, highlighting the significant role of the self-induced field in the magnetic arch

configuration compared to its minor effect in axisymmetric nozzles. Ongoing exper-

iments [135] are consistent with these findings, preliminarily providing experimental

validation for the behaviour observed here.

An extension of the code including a neutral fluid, ion and neutral internal energy

and several collisional processes was employed to study the effect of neutral dynamics

and facility effects on the performance and operation of axisymmetric nozzles. This

study is framed in the recent efforts of the space propulsion community to better

characterize the effects of ground testing on the performance of EPTs. It has been

shown in 5 that ion-neutral charge exchange collisions and ionization collisions do

not affect strongly the acceleration of ions in a magnetic nozzle in the simulated

scenarios. In fact, it was shown that the enhanced plasma mass flow provided by

late ionization in the plume slightly increases the thrust produced by the nozzle at

constant Te. However, this effect is accompanied by a strong increase in the power

needed to sustain the discharge with the same electron temperature. This power

has to be supplied to the plume in the form of an increased electron heat-flux at

the source and leads to a marked decrease in MN efficiency along with an increased

effective cooling rate in the electron fluid. These findings align with experimental

evidence, confirming that the performance loss in magnetic nozzles operating in

poor vacuum conditions is primarily caused by electron inelastic collisions, which

enhance the cooling rate of the electron fluid, reducing the amount of thermal energy

available in the plume to be converted into ion kinetic energy, ultimately lowering

overall performance.

Future lines of work

The possible lines of work that open from this thesis have been pointed out in the

are two fold. On the one hand, the models employed in the POSETS solver are all

based on the perfectly magnetised drift-diffusive model of the electrons. This model,

despite its computational advantages is limited to the study of only zeroth-order

finite electron Larmor radius effects, this model also limits the thermodynamics of

electrons to a simple polytropic or isothermal model which, as we have shown, is

a limitation in the case of high background pressures. Therefore, from the point

of view of the models employed here, the most promising extension of the present

work is the improvement of the electron model. The main change in the electron

model should be the inclusion of electron collisionality on the electron momentum

equation as it has been proved here that this effect is of higher relevance than

electron inertia, this could be included in the equations as a generalized Ohm’s law.

This change would lead to a deep change in the electron module of the code but

would be beneficial, particularly in the resolution of the closed line geometry of the

magnetic arch in chapter 4. On the other hand, the inclusion of the electron energy
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equation would allow for a better description of the cooling of the electron fluid due

to collisional processes in poor vacuum conditions and therefore get a self-consistent

picture of the performance loss of the nozzle due to collisions with neutrals. This

extension of the model would imply several changes in the code, specifically the term

involving the divergence of the heat-flux tensor which gives a parabolic character

to that equation would need to be discretized. To that end an a DG method for

the discretization of second order elliptic problems such as the Symmetric Interior

Penalty Galerkin (SIPG) method or the Local DG method (LDG) would need to be

implemented.

From the point of view of the numerical methods employed here, a speed up of

the solver could be obtained by using the so-called Hybridizable DG methods(HDG)

which reduce the number of degrees of freedom in the discretized system while

conserving the beneficial properties of DG methods. Finally, adapting the code to

the latest versions of the FEniCS library, so-called, FEniCSx would be desirable in

order to maintain its future support.
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