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Resumen

El interés en el desarrollo y la caracterizacion de motores-cohete de plasma ha cre-
cido de forma continua en los tltimos anos gracias a la creciente demanda por parte
de la industria espacial. En este contexto, el modelado y la simulacion de motores
de plasma sin electrodos (EPTSs) asi como su prototipado y testeo es de gran im-
portancia para la comunidad cientifica de la propulsién eléctrica en su empeno en
convertir este tipo de tecnologias en competidoras contra otras con mayor legado
en vuelos espaciales. Este interés en el desarrollo de EPTs se basa en el hecho de
que, en estos dispositivos, la aceleraciéon del plasma se produce sin contacto en una
tobera magnética (MN), eliminando la necesidad de mantener electrodos expuestos
al plasma. Esta caracteristica los dota de mayor simplicidad y permite que operen

con virtualmente cualquier propulsante.

La tesis que aqui se presenta tiene como objetivo cubrir parte de la falta de
conocimiento existente en la expansion de plasma en la pluma de los motores de
plasma sin electrodos. En este sentido, una de las principales contribuciones de esta
tesis es el desarrollo de una plataforma de simulacion, llamada POSETS, que utiliza
el método de Galerkin discontinuo para resolver modelos multi-fluidos de plasma
magnetizado y es lo suficientemente flexible para incluir distintos modelos para el
estudio de los multiples fendmenos que tienen lugar en la operacion estacionaria
de este tipo de dispositivos. POSETS implementa un modelo cuasi-neutro con dos
o tres especies fluidas en dos dimensiones que incluye ademas multiples procesos
colisionales y el efecto de los campos magnéticos autoinducidos por el plasma tanto

en geometrias planas como axisimetricas.

Tras la explicacion del funcionamiento de dicho software de simulacion, esta
tesis estudia dos cuestiones que son consideradas de importancia en el desarrollo los
EPTs.

La primera de estas cuestiones es la expansion de plasma en una configuracién
magnética novedosa llamada arco magnético y la evaluacién de su viabilidad para la
generacion de empuje en el contexto de la propulsion espacial. Este arco magnético
es una configuracion magnética cerrada que aparece cuando se utilizan dos EPTs
cilindricos con polaridades opuestas, asi como en ciertas propuestas novedosas para
la propulsién espacial. Esta configuracién en arco magnético ofrece algunas posi-
bles ventajas frente a las geometrias cilindricas tal como la reduccion del momento



magnético de la aeronave. En este trabajo se examina la extraccion del plasma y la
generacion de empuje, asi como el efecto de los campos magnéticos auto-inducidos en
la expansién; estos son, a diferencia con los motores cilindricos, de gran importancia

para el funcionamiento del dispositivo.

La segunda cuestion que se aborda es el efecto de los llamados efectos de labora-
torio. Se sabe que estos afectan al funcionamiento de los EPTs cilindricos asi como
a otras tecnologias opacando el funcionamiento que estos tendrian en el entorno
espacial. Con el fin de determinar el impacto de estos efectos en el comportamiento
de la tobera magnética, el modelo utilizado para este estudio incluye neutros con
dos origenes; una fuente de plasma con ionizacién parcial y un fondo de neutros que
representa la presion residual que aparece en todos los experimentos llevados a cabo
en camara de vacio. Con este modelo estudiamos la generacién de empuje y el efecto
de multiples tipos de colisiones en la expansion.

En resumen, los resultados que se presentan en esta tesis suponen un avance en
el entendimiento de la dindmica del plasma en la pluma de los EPTs. El cédigo
POSETS ofrece una herramienta versatil para el modelado de flujos de plasma mag-
netizado. Asimismo, el andlisis de la configuracién en arco magnético y del papel
de las colisiones en los EPTs amplian el conocimiento de la comunidad en algunos

aspectos clave para este tipo de tecnologias.
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Abstract

The interest in the development and testing of plasma thrusters has grown steadily in
the last years due to the growing demands of the space industry. In this context, the
modelling and simulation of electrodeless plasma thrusters (EPTs) as well as their
prototyping and testing is of great significance to the electric propulsion community
in its pursue to make this novel technology a contender against more established
ones. This interest in the development of EPTs stems from the fact that these devices
achieve plasma acceleration in a contactless manner in a magnetic nozzle (MN),
eliminating the need for exposed electrodes within the plasma. This characteristic
grants them apparent simplicity and the possibility to operate with virtually any
propellant.

The present thesis aims to tackle some of the gaps in the understanding of plasma
expansion in the plumes of EPTs. One of the main contributions of this thesis is
the development of a Discontinuous-Galerkin multifluid simulation platform, coined
POSETS, that allows for the solution of magnetised plasma flows and is flexible enough
to accommodate different models in order to study several different mechanisms
taking place in the steady-state operation of these devices. POSETS implements
a quasi-neutral, two- or three-fluid, two-dimensional model that includes several
collisional processes and the effect plasma-induced magnetic field in either planar or

axisymmetric geometries.

After the presentation of the workings of said simulation software, this thesis
studies two different topics which are considered significant for the development of
EPTs.

The first one is the expansion of plasma in a novel magnetic configuration so-
called magnetic-arch and the assessment of the feasibility of this configuration for
thrust generation in the context of space-propulsion. This magnetic-arch is a closed-
line magnetic configuration which appears when flying two cylindrical EPTs with
opposed polarities as well as in some novel propulsion concepts. This configuration
offers some possible advantages against cylindrical ones such as the reduction in
the magnetic moment of the spacecraft. In this work the extraction of plasma and
thrust generation are examined along with the effect of plasma-induced magnetic
fields which are, in comparison to the magnetic nozzle of a single cylindrical EPTs,
of stark relevance to the behaviour of the device.
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The second one is the effect of the so-called facility effects which are known to
affect the behaviour of cylindrical EPTs and other technologies obscuring the real in-
space operation of these devices. In order to gauge the impact of these phenomena
in the behaviour of a magnetic nozzle (MN), the model employed for this study
includes collisions with neutrals from two origins; a plasma source with imperfect
ionization and a background that represents the residual pressure existing in all
testing facilities. With this model we gauge the generation of thrust and the effect

of several collisions on the expansion.

In summary, the findings presented in this thesis advance the understanding of
plasma dynamics in the plumes of EPTs. The POSETS simulation platform offers a
versatile tool for modelling magnetised plasma flows. Additionally, the analysis of
the magnetic-arch configuration and of the role of collisions on EPT performance
broadens the knowledge of the community on some key aspects in this propulsion
technology.
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Chapter 1

Introduction

1.1 Electric Propulsion

Electric Propulsion (EP) is broadly defined as the use of electrical power to propel
spacecraft. The main advantage of electric propulsion against the more common
chemical propulsion is the virtually limitless specific energy that can be imparted
to the propellant, this energy is only limited by the power available in the space-
craft [1, 2]. This allows for a higher exhaust velocity of the propellant that can be
orders of magnitude higher than in chemical rockets where the energy used to accel-
erate the propellant is only the one stored in the chemical bonds of the propellant
used. This higher exhaust velocity allows for a higher specific impulse I, which,
in turn, allows for higher mass efficiency and, therefore, reduced mission cost for a
needed propulsive load. Electric propulsion has become a major competitor against
its chemical counterpart for in-space propulsion duties for its higher propellant effi-
ciency, however launch vehicles are necessarily propelled with chemical thrusters due

to the high-thrust, high-power needs required to escape the vicinity of the Earth.

Broadly speaking, there are three main stages in the operation of an electric
thruster. First the propellant is heated or ionized in the case of plasma thrusters,
this stage happens usually in a so called ionization chamber. Second, the plasma is
accelerated by some of the mechanisms that will be discussed in the following and,
lastly, the plasma detaches from the thruster [3]. Several ways of ionizing the plasma
are present in today’s electric propulsion market, however, let us distinguish each
type of thruster by the acceleration mechanism, in this sense we find three main
branches:

e Electrothermal thrusters: this type of thrusters work by heating up the pro-
pellant which is subsequently accelerated by thermal expansion in a standard

de Laval nozzle. This is the case of the arcjet and the resistojet rockets [, 5].

e Electrostatic thrusters: the thrust in this type of devices is generated by elec-
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trostatic acceleration of the plasma once it has been ionized. This is achieved
by accelerating ions through an electrostatic potential fall generated by two
electrodes. Within this category one finds one of the most common technolo-
gies, the Gridded Ion Thruster (GIT) [0, 7, 8]. Electrostatic acceleration is also
the mechanism operating in electrospray thrusters, albeit accelerating charged

liquid droplets instead of ions in a plasma.

e Electromagnetic thrusters: in this type of thrusters thrust is generated by the
Lorentz forces that exist in the magnetic interaction of the internal plasma
current and the current in a magnetic circuit. This type of acceleration is
present in multiple thrusters present in the market such as the Hall Effect
Thruster (HET). [9, 10].

The last two types of acceleration are the most commonly used in electric propul-
sion nowadays, mainly due to the prevalence of ion and Hall thrusters in today’s
propulsion landscape.

1.2 Electrodeless Plasma Thrusters

The most common EP technologies nowadays , namely the HET and GIT, require
some form of bare electrodes exposed to the plasma in order to neutralize the plasma
and/or accelerate the ion beam. Hall Effect Thrusters need a cathode both to gen-
erate the discharge and to neutralize the plasma plume downstream while GITs use
at least a cathode to neutralize the ion beam with electrons collected at the anode
to avoid spacecraft charging and in some cases an extra cathode to produce the
discharge via electron bombardment. This need for naked electrodes is one of the
most prominent limitations of these technologies for multiple reasons. First, the use
of electrodes limits the usable propellants to mainly noble gases, although iodine
fed HET have recently made their maiden flight [I1] and even water fuel system
are being tested [12]. Second, the need for a cathode increases the complexity of
the overall propulsion system making the scaling to different powers difficult and,
third, the use of electrodes exposed directly to the plasma reduces considerably the
lifetime of these thrusters.

For this reasons, in the last decades, two propulsion concepts; the Helicon plasma
thruster (HPT) [13, 11] and the Electron-Cyclotron Resonance Thruster (ECRT)
[15, 16] have gained interest from the community. This type of thrusters are usu-
ally called Electrodeless Plasma Thrusters (EPTs) [17] as they do not need any
electrodes to either ionize the plasma nor accelerate it and are considered electro-
magnetic thrusters in the classification mentioned before. These two thrusters differ
mainly in the ionization process in the chamber. The first one couples a helicon
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radio-frequency wave with the plasma (mainly collisionally, although other mecha-
nisms are believed to play a role) to heat it and ionize it [18], on the other hand
the ECRT ionizes the plasma via microwaves with a frequency that matches the
electron-cyclotron resonance in the magnetic field of the ionization chamber. In
these thrusters a magnetic field is imposed externally either with the use of electro-
magnets or permanent magnets. This magnetic field has a three-fold function:

1. The magnetic field plays a crucial role in the wave propagation process. In
the case of the HPT, the magnetic field makes the plasma transparent to the
propagation of helicon waves [2] while in the ECRT the magnetic field allows
the existence of a region where electron-cyclotron resonance efficiently couples

the power carried by the a microwave to the plasma.

2. Inside the plasma chamber, which is in most cases cylindrical, the magnetic
field is almost parallel to the chamber walls, see figure 1.1. This magnetic field
reduces transport of plasma to the walls and collimates the expelled plasma
beam in a configuration that is very similar to a #-pinch [19].

3. This plasma beam expands in a convergent-divergent magnetic field usually
named magnetic-nozzle (MN) in which electron thermal energy is converted
into ion kinetic energy via the action of an ambipolar electric field [20)].

The existence of a magnetic nozzle in the external part of EPTs provides at
the same time other potential advantages such as the possibility of exerting thrust
vectoring without moving parts in a contact-less fashion by tuning the imposed
magnetic field [21].

Despite these multiple possible advantages, EPTs are usually been considered
low performing compared to more established thruster technologies. The efficiency
and specific impulse of HET are around 35—60% and 1500 s and around 60—80% and
5000 s for GIT [3]. On the other hand, most HPT and ECRT efficiencies are usually
in the range of 10% or below [22, 23, 24]. Although some of the last prototypes
have shown very promising performances with efficiencies of up to 30% in HPT's [27]
and up 40 — 50% for ECRTSs [26], the performance of EPTs is hindered by several
phenomena that are yet not fully understood. These problems range from the role
of turbulence in the perpendicular anomalous transport of electrons to the coupling
of electromagnetic waves with the plasma. In addition, EPTs have some limitations
that are inherent to the cylindrical geometry of the magnetic field. To begin with as
one can observe in figure 1.1 the rear wall of the ionization chamber in these devices
is not magnetically shielded, this is, the magnetic field is quasi-perpendicular to
the chamber walls in this area, therefore plasma is lost to the rear wall decreasing
efficiency. Moreover, the magnetic nozzle of a cylindrical EPT has a dipole moment
that can couple to the geomagnetic field inducing a torque in the spacecraft and
affecting the axisymmetry of the plume [27]. Flying EPTs in opposed polarities or
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Figure 1.1: Schematic view of the two main types of EPTs, the Electron-cyclotron
resonance thruster and the Helicon plasma thruster.

in a closed line configuration such as the magnetic arch thruster could alleviate these

problems [28].

1.3 Plasma Simulations

Experimental development of electric propulsion devices is quite constrained for
both economic and technological reasons. In-space measurements of the behaviour
of plasma thrusters are limited, therefore most of the characterization of these type
of technologies is done in vacuum chambers. However, testing in vacuum chambers
is also not ideal. To begin with, measurements are restricted to the part of the plume
closer to the thruster, second, vacuum chambers always present a small background
pressure which has been shown to affect the performance of EP devices both through
the ingestion of neutral gas in the source and the collisions between the expanding
plasma and the neutral background [31, 32, 33, 34|, lastly, vacuum chambers im-
pose an equipotential surface over the interior of the chamber, this means that the
expansion is not completely free as all the points along the surface of the camber
are forced to be equipotential.

These limitations have made plasma simulation an important complement in the
study and development of plasma thrusters. Therefore multiple approaches have
been identified to tackle this problem, nowadays, the most prominent approaches to

plasma simulation are:

e Continuous-Kinetic models - Vlasov solvers.
e Particle-Kinetic models - Particle in cell (PIC) solvers.
e Hybrid Fluid-PIC models

e [ull-fluid models
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Of course, the continuous-kinetic models are the most descriptive ones, how-
ever, the six dimensional (3 positions coordinates and 3 velocities) phase space
makes this type of simulations unfeasible for multidimensional problems. On the
other hand, PIC simulations model particle populations as macro-particles subject
to electromagnetic forces and moved along mesh nodes, basically PIC models solve
Boltzmann’s equation with a reduced number of degrees of freedom by discretizing
the distribution function in a finite number of macro-particles with delta-like dis-
tributions weighted by the number of particles encompassed in them [35]. Finally,
fluid models solve a simplified set of equations stemming from the moments of the
velocity distribution function. This way we can solve a set of partial differential
equations that describe the plasma in terms of macroscopic its macroscopic proper-
ties such as number density, fluid velocity or pressure[30].

Nowadays the most commonly used models are PIC, fluid and hybrid, a com-
bination of all these approaches is necessary to study EP devices as the physics of
these devices is rather complex, comprising regions in which a three dimensional
PIC treatment is unfeasible and regions in which the fluid description does not offer
an accurate depiction of the behaviour of the device. PIC simulations offer higher
precision with the backlash of computational cost. On the other hand fluid models
are penalized by the weakly-collisional regime that characterizes plasma plumes in
which we are forced to choose closures for the fluid equations which are not always
justified from the kinetic point of view [37, 35].

1.4 Thesis objectives

This work is devoted to the fluid modelling and simulation of the plumes of electron-
driven EPTs such as the helicon and the ECR thruster; other EPT concepts such
as the VASIMR that rely on hot ions to produce thrust are out of the scope of this
work. In particular, two problems of interest in space propulsion are tackled. The
first one is the acceleration and extraction of an ion beam from a closed magnetic
field line configuration called a magnetic arch which appears when operating EPTs in
opposed polarities as well as in new thruster concepts as the Magnetic Arch Thruster
in order to asses its feasibility for space propulsion purposes. The second is the
role of neutral dynamics and facility effects in the operation of standard cylindrical
magnetic nozzles. These goals con be dissected into four different objectives:

1. The development of a set of different fluid models that capture the key physics
of the expansion of plasma in closed-line magnetic arch configurations as well

as in collisional cylindrical nozzles.
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2. The development of a numerical code for the simulation of magnetized plasma
expansions that is flexible enough to handle both planar and axisymmetric
geometries as well as different models depending on the physical mechanism
that the user wishes to explore.

3. The study of plasma expansion in so-called magnetic arch topologies assessing
the extraction of the ion beam from the source the thrust production mecha-

nisms and the effect of plasma-induced magnetic fields in the expansion.

4. The study of collisional and facility effects in the expansion of plasma in cylin-
drical magnetic nozzles. Including the role of background neutrals and those
expelled by the plasma source and their effect on thrust production and effi-

ciency.

1.4.1 Thesis Outline

In order to accomplish said objectives the rest of the thesis is organized as follows:

Chapter 2 starts with a brief introduction on the derivation of fluid theory
from the Boltzmann equation. Then, the coordinate systems and magnetic
fields employed in the models are presented in order to latter develop fluid
equations for each of the different species present in the plasma. The chapter
concludes with a brief discussion on the models employed in order to evaluate
the collisional cross-sections that appear in some of the fluid equations and a
description of the Ampere equation which describes the self-induced magnetic
field of our plasma.

Chapter 3 describes the POSETS code which has been developed in the con-
text of this thesis. The code employs a Discontinuous Galerkin discretization
in order to solve the different models described in the previous chapter. The
chapter starts by introducing the Discontinuous Galerkin discretization for hy-
perbolic systems developed by Cockburn and Shu [39] by describing its weak
form as well as the choice of finite elements and the time discretization of the
problem. Afterwards, a brief comment on the shock capturing scheme of Hart-
mann and Houston [40] is introduced in order to avoid spurious oscillations
around discontinuities, then, the weak form of the Poisson equation for the
magnetic vector potential is discussed. Finally, the numerical implementation
of the code is described including the code structure and the verification it has
been subject to.

Chapter 4 shows the content of the peer-reviewed publication [11]. In said
paper the expansion of plasma in a magnetic arch is studied. First, the concept
of the magnetic arch and its appearance in space propulsion are discussed.

6
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Next, we briefly discuss the model employed as their derivation was already
performed in chapter 2. The results of the § = 0 limit are then discussed
to latter examine the effect of plasma induced magnetic fields in the thrust

performance of the plume.

Chapter 5 is devoted to the study of the effect of collisions and facility effects
on the expansion of plasma in a cylindrical magnetic nozzle. The content of
this chapter is under review in a peer-reviewed journal. The chapter starts
presenting the model employed and discussing the different experimental and
numerical evidence that support the assumptions therein. After this, the dif-
ferent simulation scenarios are presented in order to then show the effect of the
different collisions in the expansion of the plasma for different neutral back-
ground pressures and source utilization efficiencies. The thrust generation and
efficiency the nozzle are discussed.

Chapter 6 gathers the main conclusions of the thesis and points out some
possible directions in which the work contained here could be continued.



Chapter 2

Fluid Models for Magnetised
Plasma Expansions

This chapter is devoted to the presentation and development of the different fluid
models in which the rest of the work of the thesis is based. In this chapter we
explore the obtention of fluid equations from the Boltzmann equation for the velocity
distribution function. We take this as a starting point to obtain fluid models for
the different species involved in the plasma. For each species we mention the model
employed in the rest of the chapters of the thesis.

2.1 Fluid Theory of Plasmas

Boltzmann’s equation for the temporal evolution of the velocity distribution function
(VDF) over time reads:
of F of

coll

To obtain equations in terms of macroscopic fluid variables one takes the equation
above and multiplies by a function g(7,v,t) and integrates over the velocity space.
When the function g(7,v,t) = av™ this operation is usually regarded as taking the
n-th moment of the VDF. Let us first define the local density as:

n(r,t) = /f(r, v, t)dv (2.2)
and the weighted average of g(r,v,t) as:

(g(r ) = fvg(}">;7<i){}(g§;t)d” _ n(i 5 / gm0 D f (o, do  (2.3)




2.1. FLuID THEORY OF PLASMAS

Finally the fluid velocity can be defined as the average particle velocity as:

1
D) /U'vf('r’,v,t)dv (2.4)

Armed with these definitions we go back to the Boltzmann equation and multiply

u(r,t) = (v(r,t)) =

it by a function g(v) that represents some physical property of the particles in the

plasma and is only dependent on their velocity and integrate over the velocity space

F )
/gatfdv+/gU'Vde+/g—-vad’U:/g_f
v v v m v (5t

The first term in equation (2.5) can be written as:

to obtain:

dv (2.5)

coll

/v 90, fdv = / B,(gf)dv — / FO,9dv (2.6)
=01 [ afdv = o(nlr.1)(s) (2.7

The second term can be written as:
/Ug'v Vfdv = V- /Ufg'vdv ~ V- (n{gv)) (2.8)

Similarly, the third term in (2.5) is expanded as:

/vgg -V, fdv = /UVU~ (g%f)dv — /Ugfvv : gdv — /vfg -Vygdv  (2.9)
—/vfg - V,gdv = —n<£ -V,9) (2.10)

In the second step we have used that the first integral in (2.9) is equal to a sum over
all the velocity components of three triple integrals:

> /// g f dv,dv,dv, . (2.11)

1=T,Y,2

All these integrals end up in an evaluation of the type:

E V=00 o0

with j, k # 7, and since no particles with infinite velocity can exist, these integrals
vanish in all cases. And also that, the second term vanishes if we assume that
V, - F = 0, this is, if the force does not depend on its corresponding velocity
component. This is not only true for all forces not dependent on the velocity such
as electric or gravitational forces but also for the magnetic force as d(e; ; xv; Bi) = 0.
Combining the results for (2.6), (2.8) and (2.9) we obtain:

3nla)) + - (nfgv)) — n{(— - Tg) = | S (n(a))] (213)

coll
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where the term in the right hand side denotes the volumetric rate of change to
g due to collisions. We designate (2.13) as the general transport equation. From
this equation it is straight forward to derive momenta of the VDF. Let us take for
example the zeroth order moment by choosing g(v) = v = 1. In this situation
we have the some clear identities such as; (g) = 1, (gv) = (v) = u and therefore
the zeroth order moment of the VDF is the common equation for particle number
conservation:

(2.14)

om+V-(nu) = [&l}

5t

Had we chosen some other constant g such as a mass or a charge we would have

coll

obtained equations for the conservation of these quantities which are formally equiv-
alent. If we take g(v) = v! = v we obtain and assume that the particle velocity can

be decomposed in a fluid velocity and a random thermal velocity (v = u + ¢):

O(nu) + V- (nuu + n{ce)) —nF = {@} (2.15)

coll

Identifying (cc) as the pressure tensor P and we assuming our plasma is only subject
to electromagnetic forces we have:

Oi(nu) + V- (nuu+nP)=n(E+v x B) + {@} (2.16)

coll

In a similar fashion we can obtain the second order moment which lead to energy

conservation laws. This way we obtain the first three fluid equations for a species s

[30]:

Ons + V- (ngus) = S, (2.17)
at<msnSus> +V- (msnsusus + Ps) =
gsns(E 4+ us x B) + F, (2.18)
gt gmena) 49 (Gt gmnadJu +a.| =
at<2ps + Qmsnsus + V 2ps + Qmsnsus Ug + qs -
-V - (usPs) + gsnus - E + Qg (2.19)

Where g, represents the heat flux vector, and S., F., and Q, represent collisional
contributions to particle number density, momentum and total energy of species s

respectively. Moreover, ps = trace(Ps)/3.

This fluid formalism comes with a caveat, the closure problem. The n first fluid
equations, even in their collisionless form, have n+1 unknowns, therefore the system
itself in underdetermined. For example in equations (2.17)-(2.19) we need further
information in order to relate the heat-flux vector q, to lower moments of the VDF,
this is known as a closure relation. In near-collisionless plasmas, information for the

choice of a closure relation can come from either experimental data, for example the

10



2.2. Two DIMENSIONAL MODELS

knowledge of an isothermal behaviour by some species, or from kinetic simulations
that can inform about the shape of the velocity distribution functions of the differ-
ent species. Therefore, special care must be taken while choosing a fluid closure if
one wants to obtain sensible results. Some common choices are the assumption of
a Maxwellian VDF for the species s which renders a diagonal pressure tensor and a
vanishing heat-flux vector, therefore the fluid equations become a closed, isotropic
and adiabatic five moment model; the choice of a Fourier-type closure for the heat-
flux vector for which we have an eight-moment model [12]. For collisionless but
strongly magnetised species, such as the electrons a reasonable choice could be the
Chew, Goldberger, Low model [13] where even without collisions the gas is ther-
malized by the small Larmor radius due to the strong Lorentz force, however this
happens only in the direction perpendicular to the magnetic field leading to a di-
agonal but anisotropic pressure tensor an equation for the parallel internal energy
and a closure relation for the heat-flux vector. Some of these models are employed
in both fluid and fluid-kinetic codes.

In the following we obtain simpler models employing fewer momenta of the VDF
than the ones described above exploiting the specific information we have for the
expansion of plasma in a magnetic nozzle. These models are intended to be fast and
able to give physical insight of the main dynamical behaviour of the different species
involved in the expansion, however, we must emphasize that the models described
above are more accurate at the expense of higher computational cost. The models
presented in the following sections make no assumptions on the geometry of the

model, this is, they can be adapted to either axisymmetric or planar geometry.

2.2 Two Dimensional Models

In this thesis all the models considered are quasi-neutral, this is n, = n; everywhere
in the domain. Moreover, these models are solved in two-dimensional geometries,
either planar or axisymmetric. In the planar case we define a right-handed refer-
ence frame with the plane Oxy coincident with the exit plane of the plasma source,
and the Oz axis pointing downstream. The plane under study is therefore the Oxz
plane, and in the 2D expansion the plasma is infinite and uniform in the y direction.
The plane Oyz is a symmetry plane, and thus only the upper half of the plane is
simulated. Without loss of generality, B is taken to point axially downstream in
this part of the domain. We introduce the Cartesian vector basis {1,,1,,1,} and
the magnetic vector basis {1;,1,,1,}, with 1 = B/B and 1, =1, x 1.

On the other hand, for the axisymmetric case we define a frame of reference
with the plane Orf coincident with the exit plane of the plasma source, and the

11
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Oz axis pointing downstream. The plane under study is therefore the Orz plane,
and all quantities are assumed to be rotationally invariant (0y — 0). Hence the
integration is formally two dimensional once an arbitrary azimuthal angle is chosen.
In this case, we define the cylindrical vector basis {1,,1,, 1y} and the magnetic vec-
tor basis {1,1,,1¢}, with 1, = 15 x 1;. In both cases the bases we have defined
are right-handed and orthonormal. In the following the second component of our
vector bases will be denoted with the letter r independently on the geometry of the
problem while ¢ will denote the third component, this is, ¥ and 6 in planar and

axisymmetric geometries respectively.

The applied magnetic field B, is generated by a set of ideal electric conductors
w, each carrying an electric current I,. The arrangement of these conductors and
their electric currents is antisymmetric about the Oyz symmetry plane in the planar

case and rotationally symmetric around the Oz axis in the axisymmetric case.

In the planar case the conductors will be a set of infinite wires carrying a current
in the 1, direction and the sum of the I,, over all the wires equals zero. The magnetic

stream-function of a single wire w is given by

_,UJOIw lnp
27]_ w

where p,, is the distance from the wire. Summing over the wire contributions we

Vpw = (2.20)

obtain the stream-function ¢z, of the applied field.

In contrast, in the axisymmetric case the conductor will be a single current loop
with radius Ry and centered at the origin whose magnetic stream-function reads:

ByR;,
2

with k2 = 4Rpr[(Rp +7)? + 2?7, By = B.(0,0) and K(m) and E(m) the complete
elliptic integrals of the first and second kind respectively [20].

Vo =~ [(Ry, + ) + 222 — KK () — 2B(K), (2.21)

The applied magnetic field can be obtained from the magnetic streamfunction
in a straightforward manner. Let us define a function {(r) such that {(r) = r in the
axisymmetric case and ((r) = 1 in the planar case. Then the magnetic field is given
by the magnetic streamfunction as:

M _
0z

oy _

~((r)B,, 5 = C()B-. (2.22)

The plasma-induced magnetic field B, has the streamfunction g, given by
Ampere’s equation, which reduces to a manifestly elliptic partial differential equa-

tion:
v277Z)Bp == _ﬂ()jy = _BOBSijv (223)
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where j, is the out-of-plane plasma electric current and Sy = po/ B2, is the 3 pa-
rameter at the centerpoint of the thruster outlet, already normalized with ny and
T.o.

The total magnetic field B is the sum of the applied and plasma-induced ones,
with ¢¥p = ¥p, + ¥p, and
1
¢(r)

With 1, the unit vector for the third dimension £&. When 3, = 0 the plasma-induced
magnetic field B, is negligible with respect to the applied one B,, and the total field

B = Ba + Bp = VwB X ]_€ (224)

coincides with the latter. Then, equation (2.23) may be dropped from the model.
Note that 1, = V¢ /({(r)B) and, for any single-variable function f(v5),

_of o df

2.3 Electron Model

In this section we describe the model employed for the solution of the electron fluid.
The model is based on the work by Ahedo and Merino in [20], which it extends.
The collisionless limit of this model is the one employed in chapter 4, while the case

where ionization and other collisions are taken into account is described in chapter
5.

To begin with, we start with the equations for continuity(2.17), momentum
(2.18) and energy (2.19) conservation for the electron fluid. Experiments [141]-[15]
have shown that electron thermodynamics can be well characterized by a polytropic
relation and therefore we close the equations for the electron fluid with a relation
for the temperature as T, = Teo(ne/neo)?, with this assumption the equation for
the internal energy can be dropped. In addition, we will consider a drift-diffusive
model for the electron fluid based on the fact that electrons in a typical magnetic
nozzle scenario are highly sub-sonic u., < ¢, and hence we drop the inertial terms
from the electron momentum equation. This is, in fact, equivalent to retaining only
zeroth-order Larmor radius effects.

With these assumptions, the equations for the electron fluid read:

One + V- (neue) = S; (2.26)
T.

0= —%V(neTe) + en.Vo — en,u, X B — mon v, (2.27)
Mo

In the continuity equation (2.26) the term S; represents plasma creation by ionization
and v, represents the effective electron momentum collision frequency due to elastic
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collisions (with ions and neutrals) and inelastic collisions (excitation, ionization).
For the moment, we dismiss the collisional contribution to the electron momentum
equation. In a latter section we will obtain the leading order corrections to the

collisionless equations in order to justify this choice.

It is useful to note that for any polytropic species the following relation holds:

1 . S\
~V(nT) = Teov<n> ,

Ne Ye — 1 Neo

and that we can write the electron velocity as function of its components in the
magnetic vector basis as:

Ue = U||elb + ZLJ_e]_J_ —+ ’U{elg. (228)

In a magnetic nozzle, electrons are strongly magnetized and therefore u . < uj, ug.

Taking all this into account we can write the conservation of momentum for electrons

as:
v—1
e ()
v—1L\ng
— B(uuelb—i—uLell —|—u561§) X 1”. (2.29)
Which can be written in terms of the thermalized potential H,
g n )"
P (£ I 20
Ye — 1 L\ng ¢ ( )
as

0= —VHe — B(U”elb + UJ_E]_J_ + Uge]_g) X 1”

The projection of this equation onto its components in the magnetic vector basis

renders:

H
216 =0 (2.31)
[
-1
Uge = glL . VHe (232)
Ul =0 (2.33)

The out-of-plane electron velocity ug can be computed from the map of VH, and
equation (2.25):
10H.
Bo1,

dH,
dipp

This wug. results from the sum of the diamagnetic (i.e., pressure-driven) and E x B

—((r) —C(r)H,. (2.34)

uge(Vp) =

drifts, which are the only first-order drifts in the problem (and indeed, they scale as

14



2.3. ELECTRON MODEL

1/B). The function H., its derivative H., and consequently ug., can be computed
from the boundary conditions at z = 0 on each magnetic line. This computation
can be done a priori, i.e. before solving the rest of the plasma problem. Observe
that only one value of H, may be imposed per magnetic line, and this restricts the
set of valid boundary conditions elsewhere. Clearly, the parallel velocity of electrons
is decoupled from the rest of the system of equations and will be obtained in the
postprocessing stage by solving the parallel projection of the steady-state continuity

equation:

B-V (ﬂ) = S, (2.35)

The solution of the electron continuity equation is heavily influenced by the choice of
boundary conditions. In the typical ranges of operation of a magnetic nozzle where
ions are mildly magnetised, current ambipolarity i.e., 7 = 0 can only be satisfied
in a given section of the expansion. In a steady state situation in space operation
where net zero charge in the spacecraft must be maintained, a natural choice is to
impose ambipolarity in the nozzle throat, however, in certain situations in testing
facilities it could be natural to impose ambipolarity in the downstream region of
the plume. In the collisionless limit, this choice does not affect the expansion as, as
explained before, electron continuity is solved after the solution of the ion-neutral
equations. However, the collisional corrections that induce a perpendicular drift
of the electrons with respect to the magnetic streamlines can be severely affected
by this choice. Particularly, downstream ambipolarity reduces heavily the electron
parallel velocity in the external part of the plume and, therefore, enhances electron
cross transport subsequently increasing the divergence of the plume. In subsection
2.3.1 we explore the effect of this choice on electron and total currents.

2.3.1 Collisional corrections to electron momentum equa-

tion

The collisionless limit of electron momentum equation (2.29) allowed us to decouple
its solution from the rest of the system leading to an algebraic solution [20]. In order
the justify the choice of dismissing collisions in the electron momentum equation we
come back to its collisional form (2.27) . Following an approach analogous to the one
in the previous section 2.3 we arrive at the collisional form of equations (2.31)-(2.32)
which read:
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0H, _
Uie = X Uge (2.37)
-1 —1
Uge = gll . VHe - X_luLe - F]-L : VHe - X_2u£e (238)

Here one can appreciate clearly that collisions in the electron momentum equa-

tion act as corrections in powers of Y ! to the collisionless case, with y !

= mev./eB
the inverse of the Hall-parameter. Let us explore in more detail each equation sepa-
rately. Equation (2.36) states that in the absence of collisions H, is conserved along
electron streamlines, collisions therefore act as a loss term for electron momentum
along these streamlines. Equation (2.37) states, that electron collisionality induces
a perpendicular velocity on the electron fluid that breaks the assumptions of perfect
magnetization taken in [20], one key feature of this equation is that in a propulsive
magnetic nozzle where electron azimuthal current is positive, collisional detachment
of electrons from magnetic streamlines is always radially outwards [16]. Finally, in
equation (2.38) collisions can be seen as an azimuthal momentum loss term due
collisional drag for the otherwise conserved (along magnetic streamlines) azimuthal
frequency wug./C. Finally, Note that in equations (2.36) and (2.37) collisional correc-

I while in equation (2.38) they are of order x~2. In a typical

tions are of order x~
magnetic nozzle scenario the inverse of the Hall parameter is in the range of 1073,
In this high Hall-parameter regime the collisional correction to electron aimuthal
momentum is regarded as negligible as it will be O(107%) everywhere in the domain.
The effect of these collisional corrections in an axisymmetric magnetic nozzle are

explored further in chapter 5.

2.4 lon Model

This section is devoted to the development of the ion models which are solved in
chapters 4 and 5. These models are very similar and based on the ones exposed
in [20]. Hereafter, we obtain the more general model that is solved in 5 and then,
making further assumptions, we obtain the model solved in 4 and that was employed

in [28].

Under the assumption that, for heavy species and particularly ions, the con-
vection of thermal energy dominates over conduction the heat-flux vector in (2.19)
vanishes. As a closure, we start by choosing a warm plasma model in which the
equation for the internal energy of ions is retained. We remind that the balance law
for the internal energy of some species a reads:

at(;naTOé> +V- (gn@Taqu) = Uq - vnaTa + Qa (239)
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where Q. includes collisional contributions to the internal energy and we have
taken a zero-heat flux closure and a we have substituted the pressure tensor for
a scalar pressure as corresponds to any Maxwellian species, the response of ions
in a paraxial MN to non-Maxwellian features in their VDF was explored in [17].
Consequently, the transport equations for the ion fluid read:

815716 + A\VAE (neui) = Sz (240)
1 en, €N
&meui +V- (neuiui + Eneﬂ) = VQb + ) u; X B+ Szun + SCEX(’LI’TL — ’U,Z)
(2.41)
8t(§neTi> + V. <§neTZuZ> =u,; - VnJd1; + Si(ﬁTn + ﬁ(ui — un)2>
2 2 2 2
3 i
+ Scex |:§(Tn - T;) + m?(uz - ’U:n)Q} (2.42)

Here the term Scgpx represents the volumetric rate for CEX collisions. The
expressions for the rates of all collisions included in this study can be found in 5.A.

To normalize the equations we have used the ion mass m;, the elementary charge
e, the radius of the plasma exit R. We also use the properties in the centre of the

nozzle ng and T,y to normalize all densities and temperatures.

Although, experiments [18] and simulations have shown that ion temperature
increases downstream due to late ionization, the temperature of electrons is several
orders of magnitude larger than that of the ions in electron driven MNs. Electron
temperatures are in the range of tens of eV [19], [50], [15] while ions show lower
temperatures of the order of hundreds of Kelvin [51]. For this reason, in a first
approximation one could consider the ion fluid to be completely cold by neglecting
its internal energy. Moreover in good vacuum conditions the mean free path of
collision with neutral atoms should be small enough to neglect collisional terms
with them. In such conditions the fluid equations of the ions can be reduced to:

Omne + V- (neu;) =0, (2.43)
oneuw; + V- (neuu;) = —n Vo + neu; x B (2.44)
This is the ion model solved in chapter 4 and in [28] and is equal to the one

developed by Ahedo and Merino for the Dimagno code in [20].

2.5 Neutral Model

In some cases the dynamics of neutral atoms might play an important role in the
performance and the operation of the magnetic nozzle [52, 53] and in other electric
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propulsion devices [51]. The neutral model included in the studies shown in chapter
5 assumes that the neutral VDF is, as that of the ions, maxwellian. This assumption
is supported by the fact that the residence time of neutrals is much longer than that
of the ions in virtue of their lower thermal pressure. Therefore their internal energy

is given by (2.39) and their transport equations:

onn, + V- (nyu,) =-S5 2.45)
Oonpu, + V- (npuyu, + pp) = —Siu, + Scpx (uw; — uy,) (2.46)
at(;nnTn> + V- (gnnTnun> =u, Vn,1,
3 3 1 ,
—SZ§TH + SCEX E(T’l — Tn) + E(ul — un) (247)

In order to reduce the dimensionality of the system one can make further assump-
tions, in partiular we assume, that neutrals are introduced in the domain without
any out-of-plane velocity, (ug, = 0), hence, the only mechanism that could induce a
rotational velocity in the neutral fluid is the exchange of azimuthal momentum with
ions via CEX collisions and, as the swirl current (following the notation in [20]) in
electron driven nozzles tends to be small, we disregard the azimuthal component of
the neutral momentum equation.

2.6 Self Induced magnetic field

Plasmas are a complex system in which a plethora of physical phenomena take
place. EPTs are usually operated in a low [ parameter regime in which the plasma
currents are small compared to the ones generating the MN. For this reason, we can
usually disregard the contribution of their induced magnetic field on the total one.
However, in the downstream region in which the applied field decreases, the effect
of plasma induced fields become larger opening the magnetic field lines, creating a
separatrix line downstream and allowing plasma detachment [10, 55]. In closed line
configurations such as the Magnetic Arch Thruster [50, 28] the self-induced magnetic
field is expected to change the topology of the applied one by stretching the lines
to and opening the arch topology. To evaluate this effect we, iteratively, solve the
Ampere-Maxwell equation which together with Gauss’ law governs the behaviour of
the magnetic field:

Vx(u'By)=-0,D+J (2.48)
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where D is the displacement vector and J is the electric current. In the static
limit we can drop the time derivative of the displacement current and therefore the
plasma-induced magnetic field is only determined by the electric currents in the
plasma. As the magnetic field is divergence free, it can be written as the rotational
of a vector field which is known as the magnetic vector potential A. We can then

write:

~V- (" 'VA) =J (2.50)

where we have used the gauge freedom in the vector potential to fix V- A = 0,
this choice is known as Coulomb’s gauge. If we are only interested in the in-plane
components of the magnetic field this reduces to a scalar problem for the out-of-plane

component of the magnetic vector potential that can be written as:

~V - (W 'VA) = Je (2.51)

The elliptic nature of the Poisson equation for the magnetic potential (2.51) poses
a problem for the simulation of static magnetic fields for unbounded domains. Far
away from any sources, the gradient of A, should decay so that its gradient is iden-
tical to zero. In fact, thanks to the gauge freedom of the potential, one could define
Ag so that it vanishes away from currents. In practice, to simulate such scenarios one
is forced to solve equation (2.51) in a very large domain whose boundaries are set to
an homogeneous boundary condition. This is problematic in a coupled problem as
the one we deal with here as solving A in a bigger domain would imply solving the
plasma equations in the same domain with the subsequent numerical cost. In order
to tackle this problem we add an anisotropic Perfectly Matched Layer (PML) to the
boundaries of the computational domain following [57]. This PML can be seen as
an absorbing region in which the magnetic potential decays much faster than in free
space without introducing new currents; this way the transition to infinity can be

compressed in a smaller domain.
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Chapter 3

POSETS: Plume SOlver for
Electrodeless Thruster Systems

This chapter describes the Plume SOlver for Electrodeless Thruster Systems (POSETS)
that has been built during the development of this thesis. The code is composed of a
set of libraries for the simulation of the expansion of magnetized plasmas. The code
includes several utilities that are described in the following, between these utilities
there is the possibility of building non-uniform unstructured meshes, the solution of
several fluid models both in planar and axisymmetric geometries with an imposed
magnetic field and the iterative solution of the plasma expansion taking into account
its self induced magnetic field. The fluid solver included in the code is based on the
Discontinuous Galerkin finite element method (DGFEM). This method combines
the advantages of the Finite Element Method (FEM), such as ease of use in non-
uniform meshes and hp-adaptivity with the advantages of Finite Volume Methods
(FVM) such as the handling of conservation laws and the exact local conservation

of physical magnitudes.

3.1 Design goals and capabilities

POSETS is intended to be a fast simulation code to assess several physical mech-
anisms taking place in magnetic nozzles. Therefore, the main goal of the code is
the simulation of magnetised plasmas in the parameter range that characterizes of
EPTs. The code has the following capabilities:

e Meshing:

— Create irregular meshes on rectangular domains with specified non-constant
cell size.
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e Fluid Solver:

— Definition of fluid boundary conditions such as supersonic inflow, outflow,

or wall.

— Definition of the semi-discrete weak form of the problem and specification

of initial conditions.

Time evolution and solution to steady state equations.

— Iterative solution of the fluid problem with self induced magnetic field.
e Magnetic field solver:

— Imposition of anisotropic perfectly matched layers in the domain bound-
ary for the simulation of unbounded domains.

— Imposition of Dirichlet or Newman at desired boundaries.

— Solution of Poisson equation for the magnetic vector potential in 2D.
e Postprocess:

— Interpolation into Numpy arrays for plotting.

— Evaluation of volume and surface integrals for conservation of different

magnitudes.

3.2 Numerical Integration

3.2.1 The DGFEM weak form

The Discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and

Hill to solve the linear transport equation in the context of neutron transport [53]

ou+V - (au) = f. (3.1)

In the 90s the Discontinuous Galerkin method gained prominence as it was fur-
ther extended to non-linear hyperbolic conservation laws and multidimensional sys-
tems of conservation laws by Cockburn and Shu [39].

Discontinuous Galerkin methods are rooted in a combination of ideas coming
from Finite Volume methods and Finite Element (or Spectral Element) methods.
Let’s briefly summarize the discretization process of an hyperbolic system of balance
laws by the DG method. Let us write this hyperbolic system as:

0q+V-Flq) = f, (3:2)
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here q is the vector of conserved variables I will be the flux function of the
system and f is a generic forcing term. To obtain the DG discretization of this
system let us first discretize the domain €2 in a set of cells Dy and consider that, in
each cell of the discretization, we can write an approximation to the solution vector

of the system ¢ as:
gz, t) ~ qu(m,t) = Y cui(t)i(), (33)
i=0

where ¢ is a set of basis functions defined in a single cell Dy and «a;(t) is a set of
time-dependant expansion coefficients, lastly N is the the number of elements in our
function basis. Armed with these definitions we take our system of conservation laws
and multiply by a set of test functions v; which using the Ritz-Galerkin projection
is contained in the same function space as the basis functions, and indeed, ; = ¢;.
The choice of this function space will be discussed in more detail later in the text,
however, it is key to point out that here we do not impose continuity between
contiguous basis functions. After multiplication by the test function, we integrate
over the volume of the cell D, to obtain:

Dy Dy, Dy,

Where Einstein’s notation for summation is being used and we have dropped de-
pendency on space, time and conserved variables for the sake of clarity. Integrating
by parts the second term in (3.4) we obtain:

Ovgin@ida — /

Dy

Dy, 0Dy, Dy,

Here 0Dy, is the boundary of element Dy and n is the outward pointing normal at
each of the facets of the element. Summation over all elements of the discretization
leads to:

/atQi,h¢idx_/ Ejvj¢idx+/ Fij¢injd3+/ Fl-jnj(qu—qb;)ds—/ fipidz =0
Q Q TCeat Dint Q

(3.6)
Here T'.,; = 0€) is the external boundary of the domain 2 and I';,; is the set of
internal boundaries between facets of the discretization, therefore T';,; = {0D :
0Dy, ¢ Tert}, and n; is the j-th component of the outward facing normal vector
n. At this point we must remember that no restriction of continuity is imposed on
the solution in the interfaces between cells, consequently one must be careful when
evaluating the third and fourth term in equation 3.6, let us then take a closer look
at them. Both the third and fourth term contain the object Fij which is usually
called the numerical trace trace of the flux Fj;. This numerical trace appears due
to the fact that the flux does not have a uniquely defined value in the interface
between two contiguous cells if the solution is discontinuous there. To assign a

value to this numerical trace we use a so-called numerical flux which is just an
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approximate Riemann solver for the Riemann problem between the two cells. Some
of the most commonly employed numerical fluxes are local and global Lax-Friedrichs
flux, the Roe flux and the Harten-Lax-van Leer, Einfeldt (HLLE) flux [59, 60].
Nevertheless, it is usually argued that the choice of the numerical flux does not have
a significant impact in the discretization for high order numerical schemes [(1, (2].
In the following we use the local Lax-Friedrichs flux:

S(Fy(ah) + Fyla ) + gt — ) (3.7

Fij(qu: qi) =
with a computed as the maximum of all eigenvalues of the normal flux Jacobian
(VF - 1,) evaluated in each side of the facet. With this definition we can write the

third term in 3.6 as:
/ Fij(ga q_)¢injd3 (3-8)
Femt

where g is the prescribed boundary condition in the external facets.

3.2.2 Discretization of the parabolic terms in the energy
equation

When considering the energy equation of ions and neutrals is we have introduced
some terms that are not fully conservative as the evaluation of the right hand side
in equations (2.42) and (2.47) requires the evaluation of gradients of the pressures
of ions and neutrals respectively. These terms, while of minor relevance (the tem-
peratures of ions and neutrals are orders of magnitude below that of electrons),
cannot be adequately evaluated with the current DG discretization, as elements are
not continuous across cell boundaries. In this work we instead project the pressure
of ions and neutrals onto a continuous function space of order 2 and its gradient
is then evaluated in this space. The numerical tests in subsection 3.4.6 verify the
suitability of this approach, and show that this projection step recovers the expected

convergence of the solution with element order p and element size h.

3.2.3 Choice of Finite Element Family

As stated before, one key element to the discretization of the system of equations
is the basis functions used. In this sense it is common to define two types of DG
methods, Modal-DG and Nodal-DG methods. In the former, the solution in equa-
tion 3.3 is represented by local sums of modal coefficients multiplied by a set of
polynomials, in this case ¢; is usually chosen to be a set of orthogonal polynomials
such as the Legendre polynomials. On the other hand, nodal DG methods recon-
struct the solution by interpolation on a series of nodes , therefore, ¢; is usually a
set of Lagrange polynomials defined over a set of nodes, for further discussion on
these possible choices see [63]. In the case of this work we choose the latter Nodal
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Figure 3.1: Position of nodal degrees of freedom for different order elements in a
reference triangle.

Figure 3.2: Lagrangian basis functions of order p = 1 on a reference triangular
element.

basis, the position of the nodes of the Lagrangian basis is depicted in figure 3.1 for
elements of order 0, 1 and 2 defined on a reference triangle.

An order 0 discretization has one degree of freedom per cell and its node is
chosen to be located at the centre of the cell. One degree of freedom per cell creates
a piecewise constant polynomial basis that renders a discretization equivalent to a
finite volume method (FVM) where the value of the function at the node is equal to
the the cell average of said FVM. A p = 1 discretization uses 3 nodes and, therefore,
piecewise linear polynomial functions as its basis; this basis functions are depicted
in figure 3.2. Finally a p = 2 discretization uses 6 nodes per triangular cell and a
set of six quadratic functions as a base.

The key feature of the DG method is the fact that it does not require any
continuity between contiguous elements, therefore the communication between cells
happens only through the numerical flux that is usually chosen to only take into
account contributions from the nearest neighbours allowing for a compact stencil, a
property that makes DG methods very interesting for parallelization purposes.

24



3.2. NUMERICAL INTEGRATION

Dy

Flow Direction

Figure 3.3: Example of inter-cell communication via the numerical fluxes. The black
arrows, represent the direction of the flux, for example in an external 'ghost’ cell
and the coloured arrows represent the interelement flux that communicates cell Dy
with its nearest neighbours.

3.2.4 Temporal Evolution

DG methods can be evolved in time using different schemes including space-time dis-
cretizations [0-], such as forward /backward Euler methods or Runge-Kutta methods.
The POSETS code comprises three different propagators, two of them being explicit,
the forward Euler and the Strong Stability Preserving Runge-Kutta scheme(SSPRK)
and one implicit, the backward Euler method. Runge-Kutta Discontinuous Galerkin
methods (RKDG) were introduced by Cockburn and collaborators in a series of five
papers from 1987 to 1998, there they developed these kind of schemes for 1D scalar
conservation laws to multidimensional systems of conservation laws and proved them
to be stable when a SSPRK of order p+ 1 was used on a discretization with polyno-
mials of order p. For this reason we use from now on a three-stage strong-stability-
preserving Runge-Kutta method by Shu and Osher [65]. The time step is chosen to
be:

05 . hy

t = ———min,—— 3.9
2p+1" 7 |ayl (39)

Where, h; and a; are the cell size and the maximum wave-speed at cell j re-
spectively. This is a rather conservative value as the CFL number necessary for Lo
stability is close to 1/(2p + 1) [66, 67].

In reality and in some of our problems the time-step can be much higher than
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that. This is due to the fact that the velocity restriction is usually the one imposed
by the ion fluid which is the one with the shortest time-scale. For this reason, when
the simulations include both ions and neutrals and after a sufficient amount of time
for which the ions are fully expanded, the time step is increased up to 10 times the
initial time-step as the characteristic velocity of the neutrals is roughly ten times

smaller than that of ions in our simulations.

3.2.5 Shock-Capturing

A simple energy analysis on the discretization 3.6 shows that the DG method is
stabilized by the discontinuities between cells. This is, the second term on 3.7 in
the presence of discontinuities between cells acts like a diffusive term that stabilizes
the solutions in the presence of shocks. However, it can be shown that this natu-
ral dissipative mechanism introduced through the jump terms is only sufficient to
stabilize the solution in the presence of shocks when piecewise constant (i.e. p = 0)
discretizations are used. When higher order discretization are used, one may need
to introduce further dissipation to obtain stable solutions. In our case, the stabi-
lization mechanism chosen is that introduced by Hartmann and Houston [40]. This
stabilization mechanism consists in the introduction of artificial viscosity in the dis-
cretization in the locations where the solution has higher gradients. In practice, this
reduces to the appearance of a so-called shock capturing term in the discretization

3.6, this shock capturing term can be written as:

/ eVq, - Veda. (3.10)
Q

Here, ¢ is the artificial viscosity matrix defined by:

e =C.h*P|V - F(qn)|I4 (3.11)

where C. and 8 € (0,1/2) are positive constants and I, is the d-dimensional unit
matrix. In the results shown in chapters 4 and 5 numerical diffusion was not added
as the solutions where stable. However, this might be mandatory in time-resolved

simulations with stronger shocks as exemplified in 3.4.1.

3.2.6 Finite Element Weak Form of Elliptic Problems

The DGFEM method is particularly well-suited for convective or convection-dominated
problems. One of the requirements of our code is the solution of the Poisson equation
for the magnetic vector potential in order to obtain the plasma-induced magnetic
field. This problem is clearly of elliptic nature, for this reason, we solve it with a
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standard finite element scheme using continuous Lagrangian elements. The obtain
the weak form of this problem we start by writing the Poisson equation of the form:

—V - (D(®)Vq(x)) = f(z). (3.12)

Here D(x) is a diffusion matrix which can be considered a scalar if the medium
being treated is isotropic; in the case of the Poisson equation for the magnetic vector
potential the diffusivity is equal to the inverse of the magnetic permeability.

Now we take 3.12 and multiply it by a test function ¢ contained in the space of
Lagrange polynomials of order p and integrate over the full domain. Note that in
this case we do enforce continuity between elements and therefore, the number of
degrees of freedom for a problem with the same number of cells is greatly reduced in
comparison with the case in which discontinuous Lagrange elements are used. After
this we integrate over the whole domain and apply integration by parts on the result

to get rid of second order derivatives to obtain:

—/V'(DVq)gzﬁdw:/ﬂbdm (3.13)
0 0
/ DV - Véda — / (n- DVq)bds = / Foda (3.14)
Q o) Q

Here the second term is responsible for the implementation of the Newmann
boundary conditions in the part of the domain where it is needed, this part of the
boundary is designated by I'y. On the other hand, Dirichlet boundary conditions
are enforced simply by taking the test function equal to zero in the parts of the
boundary I'p where these must be imposed [6%], with this choice the second term

vanishes on the Dirichlet boundary.

3.3 Numerical Implementation

3.3.1 Finite Element Libraries

In order to implement the discretizations described above, one could take two pos-
sible paths, one is to implement the whole assembly of the discretization of the
problem in a given programming language of choice. However, the assembly of the
matrix problem emerging from a finite element discretization is rather complex.
First, it involves mapping each element in the mesh of the computational domain to
a reference element where basis functions and quadrature rules are defined. Then,
local stiffness matrix and load vectors are computed and become entries of the global
matrix of the bilinear form and the RHS term. Additionally, one must enforce the
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desired boundary conditions and solve the resulting linear problem by either iter-
ative method or matrix inversion. This process, which is common in most FEM
libraries, involves O(10%) lines of code and is therefore necessarily a collaborative ef-
fort. For this reason, the POSETS code is based on the open-source library FEniCS
[69]. FEniCS is one of the many freely available finite element libraries (deal.ii
[70], DUNE[71], MFEM[72], Gridap|73], Trixi.jl [74], etc.) However FEniCS stands
out for both its Python bindings and the possibility of using the Unified Form Lan-
guage (UFL) to write weak-forms for PDEs in a manner that closely resembles that
of mathematical notation. For this reasons the POSETS code is based on FEniCS.

3.3.2 Code Structure

POSETS’ architecture is intended to be easily extendable with new physics. Thus,
the implementation of the weak forms, the stabilization algorithms, the time step-
ping and all other mathematical aspects are separated from the modules that im-
plement the different physical models. As explained before, the code is based on the
FEniCS environment and, as a matter of fact, it can be understood as a higher level
of abstraction that uses FEniCS’ Unified Form Language (UFL) in order to write
DGFEM discretizations for plasma flows and solves them using the solvers included
in FEniCS. Several solvers can be used depending on the setting of the problem,
for linear systems this includes PETSc’s built in LU solver, UMFPACK, GMRES,
and others. Non linear problems are solved via Newton iteration. In the low level
FEniCS includes C++ classes for finite element computations but allows the user
to work using mostly its Python interface. For the postprocesing stage the code
mainly uses Numpy and Matplotlib for their widespread use. The list of modules
included in the POSETS code is the following:

e MeshModule

— MeshCreator.py: Creates a two-dimensional irregular unstructured meshes
prompting Gmsh[75].

— MeshReader.py: Transforms .msh meshes into FEniCS readable .xdmf

meshes.

e PhysicalModels.py: Contains the base class for the model employed. This
class defines the system of equations to be solved by defining the physical flux
F and the forcement term f appearing in equation 3.2 for each different model.
It also defined the characteristic velocities of the problem and its boundary
conditions. Parent class to ones defined in:

— Plasma2D.py: Module containing the model for the two-fluid model solved
in chapter 4.
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— Plasma_2D_energy.py: Module containing an extension of the previous
model considering the internal energy equation for the ions.

— Plasma_2D_neutrals.py: This module contains a three-fluid model in-
cluding warm, adiabatic and isentropic ions and neutrals.

— Plasma_2D_neutrals_energy.py: This module contains the three fluid

model considered in chapter 5.

e Thermodynamic Models: In these files we define classes for each species con-
taining their non-dimensional thermodynamic properties such us temperatures
and sonic speeds.

— Electrons.py
— Neutrals.py
— Ions.py

e BFields.py: Computes analytically the imposed magnetic field and the mag-
netic stream-function produced by a set of conductors.

e B_induced.py: Contains a function self_B that computes the self induced

magnetic field of the solution.

e Collisions.py: This contains the class CollisionModels that defines meth-
ods for the computation of the adimensional collision frequencies and other
properties for the different collisions included in the model.

e Discretization:

— WeakForms.py: Defines volume and surface integrals for the different
terms appearing in the discretization 3.6.
— NumericalFluxes.py: This module contains the definition of different

numerical fluxes employed in the discretization.

e MathAux.py: Defines useful mathematical functions such as maximum, maxi-

mum absolute value, etc. without branching.

e Propagators.py: Definitions for the different time-stepping procedures im-
plemented, namely: Forward and Backward Euler and third order SSPRK.

e Simulations.py: This module defines a Simulation class with methods that
allow to easily call the different simulation strategies such us use of time inte-
grators, solving steady state equations, refining the mesh and others.

e Postprocess:
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Dependencies
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Figure 3.4: Structure of the POSETS code.

— PostProc.py: This module contains several useful functions to perform
preliminary postprocessing of the solutions such as computing fluxes
through the boundaries and others.

— np_postproc.py: Is in charge of obtaining Numpy arrays from the FEniCS
solution in order to analyze them and plot them.

— np_plots.py: Defines functions to plot some typical plasma variables
from the arrays proportioned by np_postproc.py.

The architecture of the code is illustrated in figure 3.4, there, the arrows indicate
functional dependency. The typical workflow is seen in the figure from the upper-left
corner to the lower-right corner, this is, one can create a script which loads all the
different packages to first call the meshing module and create the required mesh.
Then, one defines the PhysicalModel needed defining the different physical parame-
ters such as the number of species and the types of collisions to be included. Finally,
a time propagator and a numerical flux are chosen. This information is provided
to a simulation object which is inherits from the simulation class the methods to
solve the time evolution and the steady state solution to the discretization. The
solution can be saved into an .xdmf file which is latter read and analysed using the
functions included in the post-processing module.

3.4 Verification Tests

In order to check the correct functioning and integration of the different components
of the code, several tests have been performed on them. These tests are based on
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known analytical solutions or numerical solutions of the established DIMAGNO [20]
code. Table 3.4 summarizes the major verification tests performed on the code. The
fist two tests are purely fluid-dynamic, this is, the fluids are not magnetised and
therefore the right-hand side of the conservative system is identical to zero. The
following two tests verify the correct interaction of the LHS and RHS of the con-
servative system. Finally, the behaviour of the solver for the self-induced magnetic
field is checked.

Test name Success criterion

Shock Tube Matching to analytical solution

of an isentropic 1D shock-tube

) Correct convergence to analytical Mach
Prandtl-Meyer Expansion .
number after a Prandtl-Meyer expansion.

Expected zero radial momentum up to tolerance,
Planar Plasma Column . _
correct convergence to analytical solution.

Magnetic Nozzle Expansion Matching to Dimagno’s Solution

Double Infinite conducting wire Matching to analytical solution.

3.4.1 Sod’s shock tube problem:

The problem of the expansion of a gas in a unidimensional tube is one of the most
common problems in compressible gas dynamics and a typical textbook example on
Riemann Problems. The simulation consist of a tube filled with gas closed in both
extremes. The gas inside the tube is initialized with a discontinuity in the middle,
that separates the left state (p;,uy) = (1.0,0.0) and the right state (p,,u,.) =
(0.125,0.0). With time evolution this problem develops a left rarefaction wave and
a right moving shock wave [70]. In figure 3.5 we show the numerical solution to this
problem using different order polynomials. In order to avoid spurious oscillations in
the solution the shock-capturing numerical diffusion scheme (3.10) was included in
the simulations with p # 0 as the diffusion introduced by the Lax-Friedrichs flux does
not suffice to stabilize the solution in these cases. In both cases C. = 0.01 and 8 =0
where used. In order to show the effect of this stabilization mechanism we show in
figure 3.6 the solution with polynomials of order one without stabilization (figure 3.6
a) and with stabilization (figure 3.6 b), clearly the stabilized solutions shows great
reduction in the Runge-Gibbs phenomenon around discontinuities while maintaining
sub-cell resolution of the shock and maintaining high accuracy away from it.
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Figure 3.5: Density and velocity solution to Sod’s shock tube problem after 0.15
units of elapsed time. In all plots the solid lines represent the analytical solution
for density (in black) and velocity (in blue) while the dashed line represents the
numerical solution for polynomials of order 0, 1 and 2 from left to right. These
three cases were obtained using a mesh with 128 elements.
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Figure 3.6: Example of the stabilization mechanism using polynomials of order
one. The stabilized solution (right) shows decreased oscillations particularly in the
velocity field.
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Figure 3.7: Mesh used for the Prandtl-Meyer expansion test.

3.4.2 Prandtl-Meyer Expansion:

The solver we employ is two dimensional, therefore it is necessary to test it in a
scenario closer to that of the application of the code. To this end we solve the
typical Prandtl-Meyer expansion of a supersonic flow into a convex corner.

The solution to this problem consists in two distinct areas, the low Mach number
area with prescribed inlet boundary conditions and the high Mach number area
after the corner. These two areas are connected by an expansion fan consisting of
an infinite number of expansion waves with increasing Mach number and decreasing
density. The value of the final Mach number can be written in terms of the turn
angle and the incoming Mach number as:

0= I/(Mg) - I/(Ml) (315)

Where v is the Prandtl-Mayer function:

1 -1
v=/1 i arctan 7—(M2 —1) —arctan vV M? — 1 (3.16)
v+1 v+1

As a test case we use a turning angle of § = 2/3 radians with an incoming Mach

number of 1.1 and unit density. Solving M, from equations 3.15 and 3.16 with an
adiabatic coefficient of v = 1.4 gives a Mach number of ~ 2.33 after the expansion.

This problem is solved on an unstructured mesh shown in figure 3.7.

In order to check the correct convergence of the simulation we choose a func-
tional of the solution and compare its analytical value against that obtained in the
simulation. The functional chosen in this case is the value of the Mach number after
the expansion which is calculated analytically as explained before and sampled in
the simulation in a point after the shock. Then we define the quadratic error as
(F — F»)? with F the analytical functional and F;, the numerical one. With these
definitions the problem is solved for multiple mesh sizes and polynomial orders 0 and
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Figure 3.8: Convergence rates for the Prandtl-Mayer problem.

1 to compute the convergence plot found in figure 3.8. It is worth mentioning that
the number of degrees of freedom, which is a direct measure of the computational
cost, is 894976 in the most refined case with order zero polynomials, while the least
refined order one case is 41952, which is a twenty-fold decrease in the number of
degrees of freedom with a 100-fold reduction of the quadratic error.

3.4.3 Planar Plasma Column:

As mentioned in chapter 2 the main driver of the expansion of the plasma is the
magnetic force on the electrons. This magnetic force guides electrons along the
magnetic streamlines and the expansion of electrons creates an ambipolar electric
field confining and accelerating the ions. In the limit of non-magnetised ions the
balance between this confining electric field and the electron pressure is exact in
the throat of the nozzle. To test the behaviour of electron magnetization along the
expansion we consider the following test case:

Constant axial magnetic field: B = Bu,
e Gaussian profile for the density at the inlet.

e Sonic ions at the throat.

Polytropic electrons v = 1.2.

Symmetry plane (wall) in z = 0.

We can obtain an analytical solution as the equilibrium between magnetic and
pressure forces is maintained in the whole domain and therefore the Gaussian profile
at the inlet is transported downstream without deformation. This also implies that
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Figure 3.9: Convergence of the plasma column problem with h and p refinement.
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Figure 3.10: Density and streamlines for the planar plasma column with polynomials
of order 1 and refinement 3.

the radial momentum must be zero everywhere in the domain. Figure 3.9 the con-
vergence behaviour of the test with h (cell size) refinement and p (polynomial order)
refinement. For this test several simulations where run with polynomial orders rang-
ing from 0 to 2 and four different mesh refinements. Clearly, polynomial refinement
is far more beneficial than mesh refinement in terms of accuracy per degree of free-
dom, this situation is common for high order methods and particularly DGFEM [77].
In the case of our problem the situation is even more critical particularly with order
0 polynomials as this means no degrees of freedom are located in the symmetry axis
and , therefore, force balance is not attainable in that region for piecewise-constant
solutions. It is clear however that the error stagnates at around 10~7 — 1078, this is
due to the imposition of the upper boundary as an outflow boundary. This implies
the boundary conditions require a normal flux of mass in the x = 1 boundary, this
forces a radial flux outwards in a thin layer at + = 1 making the solution we are
comparing to inexact in that region, this can be appreciated in figure 3.10 where in
the region z > 0.8 the streamlines are seen to bend upwards.
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Figure 3.11: Plasma density and electric potential calculated with the Dimagno code
and the Discontinuous Galerkin method.

3.4.4 Dimagno Verification Tests

As discussed before, Dimagno is a fluid simulation code that appeared in the 2010s
[20]. The models included inPOSETS supersede and go beyond the one solved by
Dimagno. It is, therefore, natural to compare the code used in this work against
the output of Dimagno. To this end a simulation following the next indications.
Plasma expansion in a divergent-planar magnetic nozzle generated by two infinite
wires located at (z,7) = (0,£2.5) with a gaussian density profile with sonic veloc-
ity entering the domain in the r € [0,1]. In the next figure the plasma density
and electric potential of the Discontinuous Galerkin and the Dimagno solution are
compared.

We observe that the error in the density profiles is negligible everywhere in
the domain except for the lateral part close to the source. This difference can be
explained by the fact that Dimagno uses the method of characteristics in order to
solve the equations and therefore only solves the region connected to the source.
Moreover, Dimagno forces the last ion magnetic streamline to be tangential to its
corresponding magnetic streamline. The combination of these two differences in
the solution mechanism explains the matching of the solutions in the bulk and the
appearance of a clear discrepancy in the lateral part of the plasma.

3.4.5 Magnetic Field Solver

The magnetic field solver transforms Ampere’s law in a second order equation (2.51)
using the magnetic vector potential 2.6. For the test in this subsection we use a
simple problem consisting of two wires of radius 1 carrying current in the y axis
direction. Both wires carry a current density of 1 and therefore a total current of
7. The first wire is centered at (z,x) = (4,4) and carries current in the positive
direction of the y axis and the second current is centered in the (z,x) = (—4,—4)
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Density error refinement 3
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Figure 3.12: Difference between the density solution obtained with DIMAGNO and
with the POSETS code.

and carries current in the negative y direction. All currents can be cast as J = J,1,
and therefore, equation 2.51 transforms into a scalar equation in two dimensions
for the out-of-plane component of the magnetic vector potential VZA, = —uJ,.
The analytic magnetic field generated by this setup can be easily calculated using
Biot-Savart’s law. To gauge the accuracy of our magnetic field solver we check two
different properties, first the transition to infinity using the PML and the accuracy
of the finite element solution.

To test the former we solve the problem described before in a 30 x 30 domain,
a 20 x 20 domain and in a 12 x 12 domain. In the smaller domain the region
|z| € [10,12] U |z| € [10,12] is occupied by a 4 layer PML as specified in [57], while
the other two have vacuum everywhere in the domain. We obtain the magnetic
potentials in all three cases A¢ 39 A¢ 20 and Ag parr, respectively. All cases are solved

with the same cell size and polynomial order in the elements.

In figure 3.13 we show the isolines of the out-of-plane component of the magnetic
vector potential in all three cases mentioned above. If we take the solution with the
30 % 30 domain as a reference we observe clearly that the solution with the absorbing
layers performs equally or better than the 20 x 20 solution everywhere in the domain
while allowing for almost a four-fold reduction on the size of the problem. This is
particularly important in the case where this problem is coupled to the plasma
transport as an increase in the size of the domain for the magnetic field solver would

require solving the fluid equations in the same domain.

Moreover, we compare the magnetic field of the solution with the PML againt
the exact solution for the magnetic field along the x = 0 axis in figure 3.14. We
observe that the normalized Ly error reaches a maximum of O(107%) close to the
boundaries while being O(10™*) in most of the domain.
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Figure 3.13: Vector potential isolines calculated in the 30 x 30 domain (solid-black

lines), 20 x 20 domain (dashed-blue lines) and the 12 x 12 domain (dotted-green
lines).

2
z
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Figure 3.14: Normalized quadratic error for the magnetic field along the x = 0 line
for the test problem with a PML as described in the text.

38



3.4. VERIFICATION TESTS

Polynomial degree | Cell size | Ly error | Convergence rate

0.2 0.0041

0 0.15 0.0025 1.6
0.1 0.0014
0.2 0.0025

1 0.15 0.0013 2.2
0.1 0.00053

Table 3.1: Summary of convergence results for cell size and polynomial degree in
the test for ion and neutral energy equations.
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Figure 3.15: Convergence plot for the numerical test considering ion and neutral
energy.

3.4.6 Convergence of the discretization of the energy equa-

tion

Discontinuous Galerkin methods are, by construction, locally conservative for sys-
tems of hyperbolic equations [39]. However, as explained previously, we have intro-
duced some minor, yet non-conservative terms in the discretization of the energy
equation for both ions and neutrals 3.2.2. In this regard, our integration method
departs from the typical DG methods and therefore we find necessary to check the
effect of h (cell size) and p (polynomial order) refinement in our solution. To this
end we run a reference simulation considering ion and neutral energy with three
different cell sizes and for polynomial orders 0 and 1. We then run a fifth simulation
with an even finer cell size and order 1 elements, and take that solution as exact. In
table 3.1 we show the global Ly error of the different simulations, the corresponding
convergence plot is found in figure 3.15. 'We observe a convergence rate of 1.6 for
the order zero discretization and 2.2 for the order one discretization; the expected

asymptotic convergence rate for DG methods is O(hPT1).
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Chapter 4

Plasma Expansion in a Magnetic
Arch

The presents chapter studies the feasibility of the extraction of plasma from a closed
lined magnetic topology, so-called, magnetic arch. First, a description of the model
used 1s presented. Second, the physical setup for the simulations is explained and
the simulation results are presented. In this section we first show that plasma can
be extracted from a magnetic arch configuration in the § = 0 limit albeit with a
loss of ion momentum when traversing the closed line topology. After that we show
that, in this configuration, plasma induced magnetic field is beneficial for thrust
generation as it opens the magnetic streamlines allowing for a higher electron current
to be extracted. The content of this chapter is a verbatim reproduction of the peer-
reviewed article [28] appearing in Plasma Sources Science and Technology and is one
of the contributions of this thesis to the ZARATHUSTRA project. Kindly excuse
any redundant information which might be present in the former chapters of this
work, particularly in the introduction and the model sections. These offer however,

deeper detail into the technicalities of the topic in question in the present chapter.

4.1 Introduction

Magnetically-guided plasma expansions are a central part of the operation of elec-
trodeless plasma thrusters (EPTs) [2, 1, 17, 78]. A magnetic nozzle (MN) is com-
monly used to externally expand and accelerate the plasma generated by the source
[20, 79, 80, 81]. This is the case of e.g. the helicon plasma thruster (HPT)
[82, 83, 81, 85] and the electron-cyclotron plasma thruster (ECRT) [36, 87, 88].
Additionally, non-axisymmetric MNs have been proposed for contactless thrust vec-
tor control [21, 89].
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When the plasma consists of warm electrons and relatively cold ions, as in the
devices listed above, the MN is termed ‘electron-driven.” These MNs work by per-
pendicularly confining the expansion of the warm plasma electrons, which must be
well magnetized. This confinement occurs thanks to the applied magnetic field B,
and the diamagnetic azimuthal electron current density jy. that forms as a conse-
quence of the existence of a perpendicular electron pressure gradient and the E x B
drift. This current density gives rise to a magnetic force density in the plasma.
Part of this force density is directed radially inward (jg.B,.), while the other part
is axially outward (—jgeBqr). The former balances the electron pressure (and the
electric force) in the radial direction; the latter gives rise by reaction to the magnetic
thrust, which is the force felt by the thruster magnetic circuit due to the magnetic
field induced by the electric current density in the plasma. In turn, the parallel
electron pressure is balanced by the self-consistent ambipolar electrostatic field that
forms in the MN. This field confines electrons and accelerates ions, converting the

electron thermal energy into directed kinetic ion energy [20].

Downstream, the plasma jet must eventually separate from the turning mag-
netic lines to prevent the increase of plume divergence and the cancellation of thrust
[79]. Tt should be noted that, at least for hot-electron and cold-ion plasmas, ions do
not need to be magnetized for the MN to operate as intended; indeed, a high ion
magnetization is generally undersirable, as it makes plasma detachment occur far-
ther downstream, increasing plume divergence angle, and promoting the appearance
of a paramagnetic azimuthal ion current density jy; in the plasma that results in
magnetic drag [20]. However, special devices, such as the variable specific impulse
magnetoplasma rocket (VASIMR) [90], rely on the expansion of hot ions, where ion

magnetization is a necessity.

A single cylindrical EPT creates a magnetic dipole moment that may induce
secular torques on the spacecraft in the presence of the geomagnetic field. Flying
EPTs in pairs with opposite magnetic polarities, such that the net dipole moment
cancels out, is a straightforward and natural way to avoid this issue. Also, the use
of more than one thruster (known as ‘clustering’) is a simple way of scaling thrust
levels for larger space missions. A pair of EPTs has the additional benefit that,
if each unit can be throttled independently, some degree of thrust vector control
can be achieved without moving parts. In this configuration, the two MNs interact
and their lines connect, resulting in a new magnetic topology that here we term
‘magnetic arch’ (MA), sketched in figure 4.1a.

Similarly, the MA is an intrinsic part of some novel EPT geometries, such as the
magnetic arch thruster (MAT) concept, where the cylindrical discharge chamber
of traditional EPTs is replaced by a “C”-shaped chamber, enveloped by coils that
create a magnetic field essentially parallel to the walls, as represented in figure 4.1b
[91, 56]. By removing the rear wall that exists in cylindrical EPTs and ensuring
full magnetic shielding of the remaining walls, it is hypothesized that this geometry
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Figure 4.1: Sketch of the magnetic lines of two cylindrical EPTs firing in parallel with
opposite magnetic polarities, forming an external MA (a). Sketch of the magnetic
lines of the conceptual MAT (b), which also features an MA in the plasma expansion
region. In red, the location of the ionization chambers; in black, the position of
magnetic coils; and in blue, selected magnetic lines.

could bring advantages with regards to losses, while reducing the appearance of
external magnetic torques on the spacecraft.

The plasma expansion in an MA is radically different to that in an axisymmetric
MN: while in a single MN the plasma flux is roughly parallel to the applied field B,
(at least before detachment is well under way), in an MA the flux is only parallel
initially; downstream, where the lines of the two MNs connect, the plasma flux
must necessarily traverse the applied field roughly perpendicularly. Also, while the
plasma currents in the axisymmetric MN are predominantly diamagnetic (i.e., thrust
producing), they are expected to be diamagnetic and paramagnetic in the upstream
and downstream regions of the MA plasma expansion, respectively. Relatedly, while
in a MN the plasma-induced magnetic field B, plays a secondary role in deforming
the shape of the lines, increasing divergence minimally if the MN is well-designed
[55], it can play a more important role in the MA, potentially changing the line
topology of the total field, B = B, + B,, with respect to that of the applied one
alone, B,. Finally, the interaction of the two plasma jets coming from each end of
the device may lead to collisionless shock-like structures in the plume, not found in
smooth MN plasma expansions [20)].
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The objective of this work is to present a first model of the MA plasma ex-
pansion to examine the viability of this magnetic topology for plasma acceleration
and discuss its main physical mechanisms, in particular behind ion acceleration
and magnetic thrust production. By examining the the zero plasma-beta expan-
sion, 8 = ponT,/B% = 0, and expansions with small 3 # 0, the effects of the
plasma-induced magnetic field on the shape of the MA and the generated thrust
are discussed. The model is of application to clusters of two cylindrical EPTs and
to the novel MAT configuration described above. Finally, we identify the main
physics currently outside of the present model that should be included in the future.
Nevertheless, the major limitations of the study can be already stated from the out-
set: firstly, we shall only study a 2D planar version of the MA, rather than a full
3D geometry. Secondly, we shall ignore plasma kinetics, and employ a collisionless
multi-fluid plasma model with a simple polytropic closure for the electron pressure.

The rest of the document is structured as follows. Section 4.2 presents the
mathematical model of the plasma expansion in the MA and describes the approach
followed to integrate it numerically. Section 4.3 contains the results of the first MA
simulation using this model in the § = 0 limit, including plasma density, ion velocity,
electrostatic potential, plasma currents, and magnetic thrust. Subsection 4.3.2 then
discusses the plasma-induced magnetic field for § # 0, and how its presence alters
the expansion and magnetic thrust with respect to the § = 0 case. The limitations
of the model and its results are reviewed in section 4.4. Finally, section 4.5 briefly
summarizes the main points of this work. A preliminary version of this work was

recently presented in [91].

4.2 Model

A two-dimensional, two-fluid (ions ¢ and electrons e) model of the steady-state
plasma flow in an MA is considered. The model takes the following assumptions:

1. Quasineutral, collisionless, fully-ionized plasma.

2. Inertialess, quasi-Maxwellian, perfectly-magnetized electrons with a polytropic
closure relation.

3. Cold, singly-charged ions, with arbitrary magnetization, emitted from each
source exit. Moreover, ions are assumed to remain cold downstream, neglecting
the effects of any shock-like discontinuities on ion temperature/distribution

that may exist in the solution.

4. Planar-symmetric geometry, as an intermediate step toward the actual three-
dimensional geometry of the device. We consider the meridian plane of the
plume and assume an infinite plasma with uniform properties in the perpen-
dicular direction.
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To normalize the model, we select the ion mass m;, the electron charge ¢., and
the radius R of one of the plasma thruster exits. And, using the properties at the
center of one of the two symmetric thruster outlets (where variables are marked with
subindex 0), the electron temperature Ty (in energy units) and the plasma density
ng used for injection. Note that, even if flux coming from one outlet ever arrives at
the other, Ty and ng are defined from the single-beamlet injection properties. This
point of the outlets is also chosen as the origin of the electrostatic potential, where
¢o = 0. In the following, all symbols are already appropriately dimensionless. In
particular, the dimensionless magnetic field strength at the center of the outlet, By,
is normalized with v/m;T,o/(eR), and coincides numerically with the dimensionless
ion gyrofrequency 2, and defines the (initial) ion magnetization degree.

Figure 4.2 sketches the problem domain. We define a right-handed reference
frame with the plane Oxy coincident with the exit plane of the plasma sources,
and the Oz axis pointing downstream. The plane under study is the Oxz plane,
and in the 2D expansion the plasma is infinite and uniform in the y direction. The
plane Oyz is a symmetry plane, and thus only the upper half of the plane (x > 0,
shown in the figure) will be simulated. Without loss of generality, B is taken to
point axially downstream in this part of the MA. We introduce the Cartesian vector
basis {1,,1,,1,} and the magnetic vector basis {1;,1,,1,}, with 1, = B/B and
1, =1, x 1. Both bases are right-handed and orthonormal.

The applied magnetic field B, is generated by a set of thin, infinite electric wires
w, each carrying an electric current I, along the 1, direction. The arrangement of
wires and their electric currents is antisymmetric about the Oyz symmetry plane,
and the sum of the I, over all the wires equals zero. The magnetic streamfunction

of a single wire w is given by

_ ,u()[w
7vDBw - o

where p,, is the polar distance from the wire. Summing over the wire contributions

In py,, (4.1)

we obtain the streamfunction v g, of the applied field.

The plasma-induced magnetic field B, has the streamfunction g, given by
Ampere’s equation, which reduces to a manifestly elliptic partial differential equa-
tion:

a2¢Bp + a2¢Bp
022 0x?

where j, is the out-of-plane plasma electric current and Sy = po/B2, is the § pa-

= _,quy = _5OBgojy> (4-2)

rameter at the centerpoint of the thruster outlet, already normalized with ny and
T.o.

The total magnetic field B is the sum of the applied and plasma-induced ones,
with wB = wBa + pra and

B=B,+B,=Vizx1, (4.3)
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Figure 4.2: Sketch of the problem domain of the 2D planar MA plasma expansion.
Only one half of the MA is simulated, taking advantage of the symmetry plane Oyz
(in orange). The plasma source is located on the left of the domain (purple line),
where plasma inflow conditions are prescribed. The second plasma source is located
below the symmetry plane and is not visible in the sketch. The rest of the boundaries
are free (supersonic) outflow boundaries (green lines). The applied magnetic field
B, strength (colormap) and streamlines (black lines) are shown. Magnetic lines
connecting with the source edges and center are shown as thicker lines. The symbols
® and ® are used to denote the location of electric wires generating the field,
with electric current going into and out of the paper, respectively. The magnetic
sepatratrix line of the applied field, given by 15, = 0, is plotted in red.

When g, = 0 the plasma-induced magnetic field B, is negligible with respect to
the applied one B,, and the total field coincides with the latter. Then, equation
(4.2) may be dropped from the model. This is the case analyzed in the first part of
section 4.3.

Note that 1, = Vip/B and, for any single-variable function f(¢p),

The relevant collisionless fluid equations of electrons and ions are

% +V - (nu,) =0, (4.4)
0=-V(n1.)+nV¢ —nu. x B (4.5)
o, + V- (nu;u;) = —nV¢é + nu; x B (4.7)

ot

where we have already imposed plasma quasineutrality,
n=ne=n; (4.8)
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The electrons are assumed polytropic with the law 7, = n?~! on the whole
domain, with fixed exponent . We note that

1 ol
- ) = —— 7—1
nV(nZ )— 1Vn ,

where the equality holds for v # 1. Observe that the relevant dimensionless sound
speed is ¢; = /1.

Under the assumption of full electron magnetization, electron streamlines co-
incide with magnetic lines. Indeed, from equation (4.5) we infer that, since there
are no pressure gradients nor electric fields in the uniform 1, direction, there is no

electron fluid velocity along 1,. Therefore we write the electron fluid velocity as:
U, = uyely + u”elb. (49)

With these premises, equation (4.5) becomes

0=-v|- ! (7 = 1) = 6| —u,.BLL. (4.10)

Integrating this equation along the magnetic lines, we find that the electron energy

H, is conserved along them,

Help) = 4 T 1) 6, (4.11)

The function —H, can also be understood as a thermalized potential for the electron

dynamics.

The out-of-plane electron velocity w,. can be computed from the map of VH,
[20]:
10H,  dH, ,

Bt = =M (4.12)

Uye(VB) =

This wuye results from the sum of the diamagnetic (i.e., pressure-driven) and E x B
drifts, which are the only first-order drifts in the problem (and indeed, they scale as
1/B). The function H., its derivative H/, and consequently w,., can be computed
from the boundary conditions at z = 0 on each magnetic line. This computation
can be done a priori, i.e. before solving the rest of the plasma problem. Observe
that only one value of H, may be imposed per magnetic line, and this restricts the

set of valid boundary conditions elsewhere.

Lastly, we note that uj. does not appear in equations (4.5)—(4.7), and is effec-
tively decoupled from the rest of the problem. Indeed, it can be computed from
equation (4.4) and the boundary conditions a posteriori, after all other variables
have been solved for. In the steady state, and for zero perpendicular electron veloc-

ity (uie = 0), this equation reduces to

8% (75%) =o. (4.13)
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There are two different types of magnetic lines in the MA: inner lines that
connect the two plasma sources through the symmetry plane, and outer lines that
go around the upper part of the domain without intersecting it. In the Sy = 0
case, the separatrix between these two behaviors corresponds with the magnetic line
labeled by g = 0 (see figure 4.2), inner lines have ©¥p < 0, and outer lines have
vp > 0.

In steady state, the electron current on inner lines must be zero due to the
symmetry of the problem, and therefore u). = 0 there. This sets an additional
consistency requirement on the electron velocity boundary conditions on these lines.
On the other hand, outer lines can carry electron current, and wuj. # 0 is allowed on
them. For a globally-current free MA, the total electron current leaving the plasma
sources along these magnetic lines must equal the total ion current emitted by the
sources. This aspect of the model is discussed in more detail in section 4.4.

The electron equations have therefore been reduced to (1) a conservation law
for H., (2) an algebraic expression for u,., (3) a line-wise differential equation for
uje. Equation (4.11) may be regarded as the law that provides the electrostatic
potential on each magnetic line as a function of the electron density and the magnetic
streamline function:

Y
v—1

¢(n,¥p) = [t = 1] = He(¢p). (4.14)

Introducing relation (4.14) into the ion momentum equation (4.7) to eliminate ¢
and using (4.12) to eliminate u,. results in the following set of differential equations

for n, u.i, ugi, and wuy;:

on  Onu,;  Onug

On | Oty | D _ (4.15)
07gzzi L (9mabz-uzi n 87175;;%1‘ N 887”5 — 0 (H +uy) Ba, (4.16)
87;72331 n anvgzuzi n 8m§zum . %Zj (4 ) B (4.17)

87(”;7;@1 . 3m(;yziuzi n angjuyi = n(usi By — Ui B.). (4.18)

In the steady state, each species admits a streamfunction ¢; such that Vi; =
—nug;l, +nu,;l,, for j = e, 7. For the magnetized electrons, 9. is a function of 5.
For ions, which are non-magnetized or only partially-magnetized, streamlines may
differ from magnetic lines.

The last ion equation (4.18) can be integrated to yield (see [20] for the analogous

equation in the axisymmetric MN):

uyi +¥p = D(¢), (4.19)

where D(1);) depends only on the ion streamfunction and can be determined from
the boundary conditions at the thruster outlet.
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Observe that, if u,; = 0 at injection, the ion out-of-plane velocity w,,; develops
only when ion streamlines separate from their initial magnetic field lines; this w,,
is positive if the ion streamline detaches inwardly from the magnetic field lines (i.e.
along —1 ), and negative if separation is outwardly (i.e., along +1, ). Nevertheless,
when ion magnetization is weak (By < O(1)), the last term in the ion momentum
equations (the ion magnetic force) is typically small. Then, if u,;, < 1 initially, it
remains so everywhere else, and the electron magnetic force dominates in the right
hand side of equations (4.16) and (4.17).

Finally, we define the in-plane ion velocity as w; = u.;1,+u,;1,, and the in-plane
ion Mach number as M; = @;//~T..

4.2.1 Numerical integration

The differential ion equations (4.15)-(4.18) are in conservative form, and can be

formally written as

0
Q.v.5r-r (4.20)
ot
where
[ n
nu;
Q =
NUg;
_nuyl-
nu.; NUg;
2
nus. +n7 NUyUL
f — Al 2 ,
MUz MU, + 17
L nuziuyi numuyi
0
R_ —n (H, + uy;) By
n (Hé + in) Bz
_n(uzin - umBz)

The equations are discretized using a discontinuous Galerkin (DG) method, which
for zeroth-order polynomials coincides with the finite volume method. The main
advantage of the DG approach is that it enables easily improving the accuracy of
solution by refining the mesh size h and/or increasing the order of the polynomials
p. After multiplying equation (4.20) by a test vector V', integrating in an element
Dy, with boundary 0Dy, and using integration by parts, the following weak form is
obtained:

0Q
V'—dQ—i—/ V.F-1,dS — F :VVdQ

ot oDy

Dy, Dy

= [ V.RdQ,

Dy
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where df? is the area differential and 1,,dS is the outward-oriented area vector dif-
ferential. Upon summation over all elements D, of the domain, the second integral
must be substituted by the corresponding numerical flux integral on all internal

boundaries, taking into account the jump conditions across neighboring elements:
/ V.F. 1ndS:/ (VY —-Vv7).-F-1,dS (4.21)
Fint Fint

where I';,; are the internal facets of the discretization, symbols ‘+’ and ‘—’ indicate
the values of a discontinuous variable on one side and the other side of an internal
facet, with 1,, pointing toward the + side, and F is a numerical flux function. In
this work a local Lax-Friedrichs flux is chosen, given by

F=J(FQ) - F@)+a@ -~ @), (1.22)

with a computed as the maximum of all eigenvalues of the normal flux Jacobian
(VF - 1,) evaluated in each side of the facet.

A similar treatment is applied on the external boundary facets, denoted by I'c,
except that on those facets the + side corresponds to the weakly imposed boundary
conditions. The external boundary is further decomposed into I';,, I'gys, and Iy, for
supersonic inflow, supersonic outflow and symmetry plane boundaries respectively
(see figure 4.2). At the inflow boundary, the @ vector on the + side is determined
by the desired inflow conditions. At the supersonic outflow boundary, the Q™ vector
is taken equal to Q~ (i.e., the value of @ on the corresponding boundary element
of the domain, and finally, at the symmetry plane the Q* vector equals Q™ in the
density and parallel flux, and zero perpendicular flux is imposed (i.e., nu,; = 0).

The discretized plasma problem is initially integrated in time using a third order
Strong Stability Preserving Runge-Kutta scheme given in [39]. As initial conditions
for the time integration, any gross approximation of the expected steady state flow
can be used to speed up the convergence. After a sufficient amount of time steps,
the steady state version of the equations are solved for.

In By # 0 cases, the plasma-induced magnetic field problem is integrated using
the continuous Galerkin method using first order (Lagrange) elements on the same
mesh as the plasma problem. The weak form of (4.2) is

/ VV - Vibp,dQ = — B2, / V5,40 (4.23)
Q Q

where V' is a test function The boundary conditions used are B,, = 0¢p,/0x = 0
at the symmetry plane = 0 as indicated above, and B, = —0vp,/0z = 0 at the
thruster exit plane z = 0. On the rest of the boundary, and on the outside of the
plasma domain shown in figure 4.2, a thin absorbing layer with artificial anisotropic
magnetic permeability is defined following [57], a method that is equivalent to a
coordinate stretching, to better approximate the transition to infinity of B,,.
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CHAPTER 4. PLASMA EXPANSION IN A MAGNETIC ARCH

Notwithstanding this, it must be noted that the electric currents inside the
thruster discharge chambers and beyond the simulation domain (i.e. further down-
stream) also affect the value of B,; as these currents are unknown, and to partially
mitigate their influence on the results, the peripheral part of the domain is cut off
from the shown results whenever /3, # 0.

The self-consistent plasma and magnetic field solutions are determined using an
iterative procedure: The plasma flow is first solved for the B = B, (i.e., ignoring the
plasma-induced field). This yields a first approximation to the out-of-plane plasma
electric current j,, that is used to compute ¢, for the next iteration using (4.2).
The plasma flow is then recomputed for the new total field B = B, + B,, and
this process is repeated until plasma variables and v, vary less than a prescribed
tolerance from iteration to iteration, at which point convergence is reached.

The numerical implementation of the model employs GMSH [75] and FENICS
[69] as open-source building blocks. The code has been verified successfully by
simulating two simple cases: (1) a plasma flowing in a straight, uniform magnetic
field; and (2) a 2D planar MN, and comparison against the existing DIMAGNO
code [20]. Mass and momentum are successfully conserved in the simulation. A
convergence study with mesh size and polynomial order was also conducted and
confirmed the correct behavior of the code.

4.3 Simulation results

The applied magnetic field used for the simulations presented in this section is gener-
ated by four identical wires contained in the Oxy plane, located at x = 3,7, —3, -7,
as shown in figure 4.2. The thruster outlet in this half of the MA is located on the
Ozy plane and goes from x = 4 to = 6, and the normalized magnetic field at
the center point of the thruster outlet, (z,2) = (0,5), is By = 1 (mild initial ion

magnetization).

The boundary conditions at the thruster outlet are modeled as follows:

Uzi(o,$) = CS(O, J}); n(o7 I) — 10—3(m—5)2;
Uz (0,2) = 0; $(0,z) = 0;
0 foryp <0

7 07 = 07 [ 07 = )
uyi (0, ) u)je(0, ) {Ue for 4 > 0

i.e., the plasma density profile is assumed Gaussian, centered on x = 5 falling three
orders of magnitude at the edges of the outlet, and the axial velocity is given as
a function of the local sound velocity such that the in-plane ions are sonic at the
magnetic throats (M;o = 1) [20]. In the last expression, Uj. is a constant electron
parallel velocity imposed on outer magnetic lines (i.e., those that can carry electron
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4.3. SIMULATION RESULTS

current), computed such that the net electric current emitted by the plasma source

1S zero.

The electron polytropic exponent is set to v = 1.2, a value commonly found
empirically in MNs [92]. The out-of-plane electron velocity at the outlet of the
thruster is given by equation (4.12) evaluated at z = 0 and the conditions above,

1 ~ ont

(0,2) = - ——
ttye(0, ) B.y—1 0x

(4.24)

This choice of boundary conditions means that, at the outlet, there is no z-directed
electric field, and the electron pressure and the electron magnetic force are in equi-

librium.

For a smoother numerical solution and to prevent regions of zero plasma density,
we extend these conditions all the way from x = 3 to x = 7, where the thin wires
that generate the magnetic field are located. This completely determines the value

of H, on the whole the domain.

A mesh with cell diameter h = 0.29 and elements of order p = 1 were used to
obtain the solutions shown below.

4.3.1 Plasma expansion in the 5, = 0 limit

We begin with the analysis of the plasma expansion when 5, = 0, and the total
magnetic field B = B,,.

The map of H.(¢p) plays a crucial role in the plasma response as its derivative
H! fixes the out-of-plane electron velocity u,., which defines the electron magnetic
force. The resulting profile of H, and the u,, that follows from the boundary condi-
tions are plotted in figure 4.3. The direction of the gradient of H, causes the electron
out-of-plane velocity u,. to be positive and negative below and above the magnetic
centerline of the plasma outlet, respectively, resulting in a magnetic force that con-
fines the expanding electrons to their respective magnetic tubes. This change of sign
contrasts with the typical situation in an electron-driven MN, where the out-of-plane
electron velocity u,. has the same sign everywhere [20].

Figure 4.4 displays the steady-state solutions for the plasma density n, electron
temperature T,, electrostatic potential ¢, in-plane ion velocity u;, and in-plane ion
Mach number M;. Several aspects of these results stand out. Firstly, and similarly
to a MN, the plasma expansion is initially guided by the magnetic field, and as
the (essentially unmagnetized) ions accelerate, their streamlines do not adhere to
the magnetic lines, separating inward with respect to B, as in the axisymmetric
MN case [79]. The plasma density, electron temperature, and electrostatic poten-
tial all decrease axially as the plasma expands in this first fraction of the domain.
Secondly, ion streamlines on the periphery of the MA become essentially straight.
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Figure 4.3: Dimensionless H, function and electron out-of-plane velocity w,. result-

ing from the applied magnetic field and the upstream plasma conditions (normalized

with Bgg). Magnetic lines (black) are included in the plots for reference (thicker lines

correspond to edges and center of the plasma source).

Inward detachment proceeds as in an MN for outer magnetic lines above the separa-
trix ¢ = 0, which curve back and around the upper part of the domain. However,
for inner magnetic lines below ¢ = 0, which eventually curve downward and in-
tersect the symmetry plane, ion trajectories must traverse magnetic lines in the
outward direction. This changes ion detachment from being inward-directed to be-
ing outward-directed in part of the domain, in contrast to what occurs in an MN.
Thirdly, closer to the symmetry plane, an oblique shock structure form, at the lo-
cation where ion streamlines coming from the two thruster outlets would meet. Ton
streamlines are deflected at the shock, and plasma density, electron temperature,
and electrostatic potential rise across it. In-plane ion velocity and Mach number,
which increase in the first part of the expansion, fall through the oblique shock. Tons
remain supersonic downstream of it.

A major conclusion arising from these results is that the unmagnetized ions are
not confined by the MA magnetic field, but are able to form a jet that propagates
beyond it to infinity. This last observation is crucial to the validity of the MA
concept and for the operation of a cluster of two cylindrical EPTs with opposing
magnetic polarities.

Figure 4.5 displays the in-plane electric current density, 7 = n(@; —u|.1s), taking

a uniform distribution of electron macroscopic velocity on the outer magnetic lines
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Figure 4.4: Dimensionless plasma density n, electron temperature T,, electrostatic
potential ¢, in-plane ion velocity w; and in-plane ion Mach number M;. Selected ion
streamlines (purple arrowed lines) are shown in the @, plot. Magnetic lines (black)
are included in the plots for reference (thicker lines correspond to edges and center
of the plasma source).
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Figure 4.5: Dimensionless in-plane electric current density 7 = n(w; — uj.1;) (back-
ground color and purple arrowed lines). The separatrix line )5 = 0 is shown in red.
Magnetic lines (black) are included in the plots for reference (thicker lines corre-
spond to edges and center of the plasma source).

(¥p > 0) to yield a globally current-free solution. As the electron flux on inner
magnetic lines (g < 0) must be zero, the 7 in this region results solely from the
ion current. Above the separatrix line ¥»g = 0, the strong compensating electron
current responsible for making the system globally-current-free dominates. Clearly,
the location of the separatrix line 1 = 0 with respect to the thruster outlet is
a major defining aspect of the MA plasma expansion with regard to the in-plane
electric currents. This aspect is further discussed in section 4.4.

Figure 4.6 depicts the x and z magnetic force densities j, B, and —j,B,, where
Jy = n(uy; —uye) is the out-of-plane electric current density. We note that j, is dom-
inated by the electron contribution everywhere in the domain, as ion magnetization
is low. Observe that the product j,.B is essentially independent of the magnitude
By by virtue of equation (4.12). Indeed, this product depends essentially on the ini-
tial electron pressure gradient at the thruster outlets, which determines the profile
of H,.

The two components of the magnetic force density are largest near the thruster
exit plane. The x force density, essentially perpendicular to the magnetic lines in
the first part of the domain, confines the plasma expansion laterally. As it can be
observed from figure 4.6a, this confining force points in the z > 0 direction in the
innermost part of the arch (i.e. in the region between the two plasma sources), while
it points along = < 0 everywhere else, helping reduce the divergence of the jet.

The z force density gives rise to magnetic thrust, and is seen to be large and
positive at the beginning of the expansion, where n, T, and B are large. A small
negative contribution exists downstream on inner magnetic lines, beginning at the
point where B, = 0 and lines curve down toward the symmetry plane. This neg-
ative contribution is mostly noticeable in the region after the shock wave, where
plasma density (and therefore the out-of-plane current density) increases locally
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1074

Figure 4.6: Magnetic force density in the axial (—j,B,) and radial (j,B,) directions.
White lines separate regions with positive (+) and negative (—) values of the force
densities. Magnetic lines (black) are included in the plots for reference (thicker lines
correspond to edges and center of the plasma source). Mind the different color scales
of each plot.

again. These characteristics are consequential on the magnetic force density and
the generation of magnetic thrust: while positive thrust is generated initially in the
region where they resemble a traditional MN, the magnetic force generates drag in
the downstream region where the magnetic lines of each thruster connect, lowering
the net thrust of the device.

As follows from the sum of the electron and ion momentum equations (4.5) and
(4.7), the magnetic thrust force generated by the plasma contained in a rectangular
control volume €(z) that spans the domain from the initial plane z = 0 to a variable

axial position z can be equivalently computed as
F(:) = FO) = [ (~5,B.)d0
Q(2)
89(2)

where 0€(z) is the full boundary of the control volume. The first integral is the
volume integral of the axial magnetic force density in figure 4.6b, while the second
integral is the flux integral of total momentum on the boundaries of the integration
domain. Observe that the relative importance of electron pressure thrust decreases
to zero sufficiently far downstream, and that ion momentum dominates as the ex-
pansion converts electron thermal energy into ion kinetic energy.
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Figure 4.7: Thrust integral over z-const surfaces, as a function of z. The thick black
line correspond to By = 0. The other lines are for simulations with Sy = 0.02 (blue
line), 0.04 (red), 0.08 (green) as indicated in the plot. Values have been normalized
with the total momentum flux at the thruster exit.

Figure 4.7 displays the thrust force F'(z) normalized with F'(0), the initial mo-
mentum flux of the plasma coming out of the sources (directed ion momentum plus
electron thermal momentum). Positive magnetic thrust is produced initially, in the
first part of the expansion. When the plasma approaches the bend in the magnetic
lines and the shock, magnetic thrust plateaus, and thereafter, a minor contribution
of negative thrust (i.e. magnetic drag) results by which F(z) decreases by a small
amount. As indicated above, this is a natural consequence of the closed shape of
the inner magnetic lines and the maps of n, u,., which give rise to a negative axial
magnetic force density near the symmetry plane in the second part of the expansion,
as shown in figure 4.6. In the present simulation with gy = 0, the negative contri-
bution decreases F'(z)/F(0) about an 8% at z = 20 with respect to its maximum,
which occurs at z ~ 7.

4.3.2 Effect of the plasma-induced magnetic field

Figure 4.8 displays the normalized plasma-induced magnetic field B,,/(5yBao), com-
puted from the j, current density corresponding to the 8y — 0 limit. To mitigate
the influence of the plasma currents beyond the simulation domain on the solution,
the peripheral part of the results has been cut out from this and following plots.

As noted before, j,B, is essentially independent of B in the low ion magneti-
zation regime under consideration. Consequently, by virtue of equation (4.2), the
dimensionless group B,/(5oBao) is also essentially independent of 5y and B,y. The
direction of B, opposes the applied one in the proximity of the symmetry plane,
and points roughly axially downstream far from it. Hence, the trend of B, is to
stretch the MA downstream as 3y increases.
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Figure 4.8: Induced magnetic field strength and lines derived from the out-of-plane

plasma current j,, normalized with SyB,.

Figure 4.9 displays the self-consistent total magnetic field B = B, + B,, and the
streamlines for ¢p = ¥, +¥p, for different values of 3y. As f3 is increased from 0,
B, gains relative importance. The main effect is the modification of the geometry
of the central lines of the MA, which are stretched downstream. The separatrix line
displaces downward, and some inner magnetic lines that intersected the symmetry
plane for 3y = 0 are converted into outer lines that go around along the periphery
of the domain. As the fraction of inner lines shrinks and the fraction of outer lines

grows, more magnetic lines can carry electron current away from the device.

For the larger values of [y shown, a region of very low magnetic field strength
forms near the symmetry plane and the separatrix eventually intersects with it,
forming an ‘X’ point at which B = 0, visible for 5, = 0.08 in figure 4.9. This brings
about a topology change of the MA, which now features a new magnetic region
that forms beyond the ‘X’ point, whose magnetic lines are disconnected from the

upstream plasma sources.

While the general characteristics of the plasma expansion are qualitatively similar
to the By = 0 case, the value of 5, has a major effect on the generated magnetic
thrust F(2)/F(0). Figure 4.7 displays the evolution of the thrust force as a function
of fBy. It is evident that, while the initial part of the curve roughly coincides for all
cases, the stretching of the MA reduces the negative drag contribution that occurs
downstream. Indeed, as 3, increases, the magnetic thrust force generated within the
domain rises. For fy = 0.04, F'(z)/F(0) remains almost flat after a weak maximum,
and for By = 0.08, the local maximum disappears altogether, with the relative thrust
gain F(z)/F(0) increasing by 10% at z = 20 with respect to Sy = 0.

These results suggest that the plasma-induced field B, plays a central role in
shaping the expansion and the propulsive performance of the device.
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Figure 4.9: Dimensionless total magnetic field B = B,+ B, strength and streamlines
for 5o = 0, 0.02, 0.04 and 0.08. Magnetic lines (black) are included in the plots for
reference (thicker lines correspond to edges and center of the plasma source). The
separatrix line in the last case is shown as a red line.
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Figure 4.10: Sketch of two MA configurations with 3y = 0: open arch (a) and closed
arch (b). Lines represent magnetic field lines. Thicker blue lines correspond to the
edges of the plasma source. The red line is the separatrix (15 = 0). Black squares

represent the position of the magnetic field generators.

4.4 Discussion

The results from the previous section merit additional discussion. Firstly, the loca-
tion of the separatrix line and its effect on electron currents deserves closer inspec-
tion, as the global current-free condition is an essential one that must be satisfied by
any plasma thruster operating in space. It is possible to distinguish different types
of MA, depending on the connectivity of the magnetic lines passing by the plasma
source exit with the symmetry plane:

1. If there are both inner lines and outer lines (as defined in section 4.2) pass-
ing through the plasma source, an open arch is formed as sketched in figure
4.10(a). This occurs when the separatrix falls within the limiting magnetic
lines at the edges of the source, it is the relevant type of MA for tightly-
packed magnetic generators around the sources, and the one simulated in this
work. The plasma expansion in the MA can be globally current-free, as long
as the electron current in the lines above the separatrix balances the emitted
ion current. A variant of this configuration has the last magnetic line passing
by the lower edge of the source intersecting the thruster exit plane, rather than
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the symmetry plane.

2. If all magnetic lines passing through the outlet are inner lines, we have a closed
arch as in figure 4.10(b). In this case, all plasma-carrying lines lie below the
separatrix. No electron current can be extracted from the plasma thrusters in
the fully-magnetized-electrons, collisionless, 5y = 0; this is a consequence of
electrons having zero perpendicular velocity, uj. = 0 in this limit. Hence, the
‘closed” MA cannot be current-free without invoking additional effects. This
configuration occurs e.g. for larger separation of the magnetic field generators
from the source.

3. Yet another magnetic configuration could be discussed, if all the magnetic
lines that pass through the outlet are outer lines. In this case (not sketched),
there is no real “arch”, and the separatrix falls below the lower edge of the
plasma source. This situation would arise when e.g. the plasma sources are
not concentric with the magnetic field generators, and is considered of lesser
practical interest.

Interestingly, as shown in section 4.3.2 the downward displacement of separatrix line
as [y is increased may cause a change of MA type. In particular, a closed arch is

expected to become an open arch for a sufficiently high value of ;.

Secondly, even in the strict Sy = 0 limit, collisions and an out-of-plane electric
field £, are mechanisms outside of the present model that could relax the electron
transport in the perpendicular direction, thus enabling u . # 0 and, as a side effect
and as dictated by the continuity equation, allow uj. # 0 (and therefore electron

current extraction from) even on inner magnetic lines.

The main effect of non-zero collisions on the in-plane electron transport can be
understood by including a new term in electron momentum equation (4.5), which

now becomes
0=-V(nTl.,)+nV¢—nu. x B—R,, (4.25)

where R, = nm.v.u. is a simple representation of the collisional term. The y
projection of this equation yields

u B = X_luye, (4.26)

with x = B/(mev.) the local Hall parameter. Hence, a perpendicular electron flux
arises, with w . # 0 pointing in the direction opposite to the confining —eu, 51|

force.

An electric field in the out-of-plane direction, £,1,, can also enable perpendicular
electron flux. The E x B drift induced by this field generates a collisionless u .
This mechanism may play a role e.g. in 3D MA expansions, where F, may arise
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if the plasma undergoes lateral polarization, but is not present in the 2D planar
geometry studied here.

Thirdly, another major aspect to be discussed is the validity of the electron
model. The profile of H, that is defined at the upstream plane by the boundary
conditions on n, T,, and ¢ fully determines H, in the rest of the domain, and
therefore H!, which dictates u,. and defines the magnetic force density in the plume.
The map of H,., together with the map of n, also defines the electrostatic potential ¢
in the plume. As such, H, has a central role on the MA plasma dynamics. However,
while it is reasonable to prescribe H. on the plasma-carrying magnetic lines that
pass through the source, it is not evident what should be the condition on the
external lines outside of this main magnetic tube where plasma density is negligible.
Here, in this first simulation, we have opted to define H. there by setting n ~ 0
and ¢ = 0 at the upstream plane for those lines. A similar problem arises in cases
with By > 0, if an ‘X’ point forms that bears a new magnetic regions beyond it,
disconnected from the plasma sources, as discussed in section 4.3.2. In this case,
we have extended the value of H, on the last magnetic line before the ‘X’ point to
this new region. Incidentally, note that if H, were constant everywhere (which can
always be achieved with the right choice of ¢ upstream), there would be no u,. and
hence no magnetic force on the electron fluid, and the magnetic guiding effect of the

MA would disappear; this conclusion applies to traditional MNs too [20].

The electron model may need to be revisited and include inertia effects, finite
Larmor radius effects, and/or more advanced closure relations based on a kinetic
description, which may play a non-negligible role in some of the regions mentioned
above. Altogether, these effects may modify the H, conservation law and the parallel
and perpendicular transport of electrons. Similarly, the assumption of quasineutral-
ity may need to be dropped in favor of integrating Poisson’s equation, in low density

regions.

Fourthly, the applicability of the 2D planar MA model to describe the actual 3D
MA remains to be assessed. While it is currently expected that the planar model
captures the essence of the mechanisms at play in the actual MA, adding bounds to
the plasma in the third dimension can have additional effects, such as the possible
set up of a polarization E), field that further changes the axial dynamics due to the
E x B drift as discussed above. Bounds in the y direction also demand the closure
of out-of-plane plasma currents j,, which will modify the plasma solution and the
plasma-induced magnetic field with respect to the 2D planar ones. Additionally,
due to the additional dimension, the plasma expansion is stronger in 3D than in 2D,
resulting in a faster-decreasing plasma density and electrostatic potential.

Fifthly, it is noted that the present model with cold ions neglects the ion tem-
perature increase that is expected to occur across the shock structure seen in the
solution. Including finite ion temperature and the ion energy equation in the model
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would be a necessary first step to study these aspects consistently. Alternatively,
ions could be modeled as two distinct species, representing the ion beams coming
from each plasma source, and overlapping in the interaction region. Ultimately, the

correct treatment of the collisionless shock requires a kinetic model.

Lastly, we note that while the MA model remains to be validated against exper-
iment directly, it relies on similar hypothesis to those of the MN model of reference
[20]. That model has shown good agreement with existing laboratory measure-
ments in the literature, in particular the plasma expansion and magnetic thrust
generation [93, 94], ion-inertia-driven plasma detachment [95], and the role of the

plasma-induced magnetic field [96].

4.5 Summary

A MA is expected to form when the MNs of two EPTs with opposing polarities
interact. It is also the topology of the magnetic accelerator in the novel MAT
concept. A first model of the external expansion of a MA has been presented, which
already describes much of its interesting plasma physics in spite of its simplifying
assumptions.

The ions are seen to form a free jet that traverses the closed lines of the magnetic
field, even if electrons are fully magnetized. An oblique shock structure forms when
the two beams coming out of the two thruster outlets meet. Electron equations
reduce to algebraic relations in the inertialess, fully-magnetized, polytropic, colli-
sionless limit of the model, and describe how the out-of-plane electron velocity is
fully determined by the magnetic field map and the upstream boundary conditions.

Electron current can only be extracted along magnetic lines that do not connect
the two sources through the symmetry plane (i.e., outer lines), in the limits of
the model. For a given applied magnetic field map, these lines are delimited by a
separatrix line; the location of this separatrix with respect to the thruster outlet
determines the type of MA. In the open MA considered here, a globally-current
free solution of the plasma expansion is possible. If all the lines passing through the
outlet connected with the symmetry plane, no electron current could be extracted in
the strict fully-magnetized, collisionless, planar, Sy = 0 limit of the electron model,
and other mechanisms would need to be included to enable it.

Net positive magnetic thrust is produced from the interaction of the out-of-plane
plasma currents and the applied field. These currents are dominated by the electron
contribution at low and mild ion magnetization strengths. It is observed that most
of the positive contribution to thrust comes from the initial stages of the expansion,
while a small negative (drag) contribution results from the region where the magnetic
lines bend back to the device.
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The plasma-induced magnetic field B, has been shown to stretch the MA down-
stream when [y # 0, and to increase the fraction of electron current-carrying mag-
netic lines that pass through the source. The stretched arch has a smaller negative
drag contribution to thrust, and indeed a monotonically increasing magnetic thrust
curve results already for moderate values of 5;. Hence, modeling the plasma-induced
magnetic field is essential for the correct description of the MA dynamics. This con-
trast with the case of an axisymmetric MN, where the deformation of the field caused
by B, plays a rather secondary role in thrust generation at small /.

We conclude that the present preliminary analysis supports the feasibility of the
MA topology for plasma acceleration and magnetic thrust generation, and therefore,
we identify no showstopper to flying pairs of EPTs with opposing polarities or the
novel MAT configuration. More advanced models and laboratory experiments must
ensue to fully ascertain this claim.
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Chapter 5

Neutral Dynamics and Facility
Effects in Magnetic Nozzles

The following chapter investigates the effect of neutral dynamics and the so called
facility effects on the behaviour of plasma expanding in a cylindrical nozzle. To
begin with, the model used is introduced, this three-fluid model considers several
inter-species collisions.  Next, we present the different simulation scenarios that
are considered, these different scenarios include the introduction of neutrals from a
non-ideal source as well as the addition of a background of neutrals reproducing the
existing conditions in the ground testing of EPTs. This way we show that the ion
fluid is not strongly affected in the envisaged operating point in MNs. Attention is
also paid to the effect of these collisions on the momentum of the electrons which
are shown to be affected by the collisions particularly for some electrical boundary
conditions. Moreover, we show strong collisional losses due to inelastic collisions of
electrons with neutral that affect the thermodynamics of the electrons and reduce the
performance of the nozzle. The content of this chapter is a verbatim reproduction
of the submitted article [97] and is one of the contributions of this thesis to the
ZARATHUSTRA project. Kindly excuse any redundant information which might be
present in the former chapters of this work, particularly in the introduction and the
model sections. These offer however, deeper detail into the technicalities of the topic

i question in the present chapter.

5.1 Introduction

Electrodeless plasma thrusters (EPTs) have gained interest from the space propul-
sion community in the last decades thanks to their theorized advantages with respect
to other well-established electric propulsion technologies[2, 17]. EPT devices such as
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the Helicon Plasma Thruster (HPT) [958, 99, 100, 78, 85] and the Electron-Cyclotron
Resonance thruster (ECRT) [15, 87, , , O0] are now under development.
In these devices, plasma acceleration occurs in a so-called magnetic nozzle (MN)
[103, 20] that, similarly to a de Laval nozzle in chemical propulsion, converts (elec-
tron) thermal energy into (ion) directed kinetic energy. The lack of electrodes and
neutralizing cathode in EPTs offers a number of possible advantages compared to
other, well-established propulsive technologies, such as potentially longer lifetimes,
the possibility to use virtually any substance as propellant [104], simpler scalability
to higher and lower power levels, wider thrust-specific impulse throttleability, and

even the possibility to exert thrust vectoring without moving parts [21].

Several models have been employed to study the expansion of magnetized plasma
in a MN. The most fundamental approach is the continuous kinetic modelling which
solves the Vlasov equation directly and is usually limited to 1D scenarios [105, 38].
To overcome this inherent limitation of continuous kinetic modelling, full particle-
in-cell (PIC) models [106, , 108] have been employed, these models are however
usually limited to two dimensional geometries due to their high computational cost.
Another alternative is the hybrid approach in which electrons are modelled as a
fluid while ions and neutrals are modelled as particles [109, |. This approach
has proved good agreement with experimental results and even simulations of the
plasma-wave coupling has been achieved [I11] . However, parametric studies re-
quire a computationally cheaper option, a role fulfilled by full-fluid simulations in
which one solves the equations for macroscopic balance of mass, momentum and
other momenta of the Boltzmann equation [20), , 36]. A good example of this is
DIMAGNO, a collisionless two-fluid model which has been employed to study the
mechanisms for magnetic thrust generation and MN efficiency [20], the detachment
of ions [79], and the effect of the self-induced magnetic field at non-zero plasma beta

[55].

However, while the collisionless assumption is a reasonable one in warm, fully-
ionized plasma jets expanding into vacuum, it is questionable in current EPT lab-
oratory experiments, where the mass utilization efficiency is not high, and where
background pressure can affect the MN-plasma dynamics. The performance of other
EP technologies such as HET has been shown to improve with varying background
pressure [31, ]. In the case of MNs the understanding of the behaviour of noz-
zle performance with background pressure is yet incomplete. Several experiments
performed at ONERA [1 14, 26] and Michigan [52] have pointed towards thrust and
efficiency losses due to increased background pressure, the latest authors attributed
these losses to inelastic electron-neutral collisions that reduce available power to
accelerate the ions. From the simulation point of view, Zhou and Sanchez-Arriaga
[115] used a kinetic model to show that the thermodynamics of electrons is only
lightly affected by electron collisionality in paraxial nozzles. Finally, full-PIC simu-

lations [116] have shown performance losses MNs in very poor vacuum conditions;
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however, significant performance losses where not observed at background pressures
comparable to the ones observed in the aforementioned experiments. Despite the
relevance of this work, some points such as the effect of the different collisions on the
thrust characteristics of the nozzle and the comparison with the key experimental

measurements in [52] where not assessed.

Another notable effect that facility testing may have on the expansion of plasma
in the magnetic nozzle is that of finite chamber size. The electrically conducting
wall of the vacuum chamber is expected to change the behaviour of the electron
population. This effect was already mentioned in [20] where it was noted that a
change in the electrical boundary conditions strongly affected the electron current
found in the plume. Some experiments have been performed by Baldinucci and
collaborators [117] where measurements showed that the addition of an electrically
conducting barrier downstream decreased thrust by up to 10%.

The present article expands on the initial work by Ahedo and Merino [20] by,
firstly, modelling the neutral population as an additional fluid and including the
effect of ionization and charge-exchange (CEX) collisions on the heavy species.
This allows us to gauge the importance of collisions in the MN plasma expansion
and the propulsive performances when propellant utilization efficiency is not 100%,
and in the presence of background pressure. The ion velocity distribution function
(IVDF) is estimated in these cases a posteriori, showing the development of a slow,
background ion population. We also go beyond that seminal work by solving the
plasma equations in the peripheral region beyond the last plasma magnetic line
in the MN, observing the buildup of a potential barrier. Secondly, under the as-
sumption that collisions are non-dominant, we evaluate perturbatively the effect of
excitation, ionization, and elastic collisions on the electron fluid, and discuss the
influence of vacuum chamber boundary conditions (metallic or dielectric walls) on
electron streamlines, postulating that this aspect can change the plume globally
and affect its divergence angle; this study is an expansion of the one found in [16].
While a polytropic closure relation is employed in the electron model, the energy
cost of inelastic collisions, and the enhancement of plasma mass flow in the plume,
are taken into account to compute the MN efficiency consistently.

The following sections of this paper are organized as follows. Section 5.2 in-
troduces the three-fluid model, making special emphasis in its improvements with
respect to previous works. Numerical integration for the equations of the model is
tackled in subsection 5.2.3. Section 5.3 describes the simulation setup, presents the
results for the different cases considered, and analyzes the plasma response. Finally,
section 5.4 gathers the main conclusions of the study.
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5.2 Three-fluid Model

We consider a plasma jet of initial radius Ry composed of electrons (e), singly-
charged ions (i), and neutrals (n). The plasma is assumed quasi-neutral every-
where, n; = n., as it expands from a set of prescribed upstream conditions, into a
diverging, axisymmetric, applied magnetic field B that can be expressed through
the derivatives of a magnetic stream function v,

B =V x 1. (5.1)

Here we have introduced the unit vector in the azimuthal direction, 1. We further
introduce two right-handed, orthonormal vector bases: the cylindrical {1,,1,,14},
and the magnetic {1),1,,14}, with 1 = B/B and 1, = 15 x 1| in the meridional
plane. Lastly, we also introduce the unit normal pointing in the inward direction at
the boundaries of the domain, 1,,. Without loss of generality, we shall assume that
B points downstream at the MN throat.

5.2.1 Ions and neutrals

In the magnetic nozzles of HPTs and ECRT's the energy is transferred to the plasma
in the form of electron thermal energy. Hence, they are characterized by electron

temperatures of the order of tens of electronvolts [1 18, ] and ion temperatures of
a fraction of an electronvolt [18] and therefore T, /T; > 1. For this reason, ion tem-
perature is usually neglected in fluid simulations [20] or considered constant [112].

However, a rising ion temperature is one of the main indicators of collisional effects
in MNs, this is attributed to late ionization in the plume and other collisional pro-
cesses which broaden the ion velocity distribution function (VDF). For this reason
our model includes ionization and charge exchange (CEX) collisions and retains the
equations for ion and neutral internal energy recognizing that the temperature of

neither of the heavy species will play a major role in the expansion.

Under the assumption that the convection of thermal energy dominates over heat
conduction the fluid equations for the conservation of mass, momentum and internal

energy for both species can be written as:
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8tne + V. (neui) = Siona (52)
1 en, ene
Ome; + V - (neusu; + EneTi) i Vo + —u; X B+ Sipntn + Scex(u, — u;)
(5.3)
3 5
O\ gneTi | +V - | gneTiu: | = wi - VneT;
3 m; 2 3 m; 2
+ Sion §Tn + 7(”1 - un) + SCEX §(Tn - T’z) + 7(“1 - un) (54)
atnn +V- (nnun) = _SiOTH (55)
1
8tnnu'n + V- (nnunun + _nnTn) = _Sionun + SCEX (uz - un) (56)
3 )
8t<§nnTn> +V- (§nnTnun) =u, - Vn,1,
3 3 m; 2
- SionETn + SCEX Q(E - Tn) + 7(“1 - un) (57)

Here the term Scgx represents the volumetric rate for CEX collisions and we
have used m,, = m;. The expressions for the rates of all collisions included in this
study can be found in the appendix 5.A.

Observe that collisional terms in egs. (5.4) and (5.7) are not symmetric, this is
due to the fact that collision between species with different fluid velocities tend to

raise both of their temperatures.

We further assume that neutrals are introduced in the domain without any ro-
tation, (ug, = 0), hence, the only mechanism that could induce a rotational velocity
in the neutral fluid is the exchange of azimuthal momentum with ions via CEX
collisions and, as the swirl current (following the notation in [20]) in electron driven
nozzles tends to be small, we disregard the azimuthal component of the neutral

momentum equation.

The neutral density in the former equations has two different origins. Some neu-
trals are introduced in the domain at the nozzle throat simulating a plasma source
with imperfect utilization efficiency. Moreover, we define a background density n,
which we manually set as a minimum density for the neutral fluid. This background
density is defined by choosing a background pressure p, which allows us to fix n,
through an ideal gas law ny, = py/T}.

To integrate our model it is necessary to impose both boundary conditions (BCs)
and initial conditions (ICs). For the ion and neutral fluids, we impose the values of
all the conserved variables at the inlet, and no BCs at the outlet as the velocities are
supersonic there. On the other hand we impose symmetry conditions on the axis
r=0.
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5.2.2 Electrons

Electron inertia is assumed negligible, this is equivalent to retaining only zeroth-
order Larmor radius effects. Moreover, a polytropic closure relation for electron

temperature,
Te = TeO(”e/”eO)’ye—la (58)

is imposed, with a prescribed exponent ~.. While the polytropic model ignores the
kinetic features of the electron expansion, it is known to be a reasonable closure
to the experimentally observed non-local electron thermodynamics in the MN[92,

, 31]. Experimental evidence shows that a ratio of specific heats slightly above
isothermal adequately describes the electron cooling rate in many EPTs [14, 15, 120].
On the other hand, kinetic evidence from the work of Zhou [115] shows that electron
cooling is only weakly affected by collisionality in the envisaged ranges of operation
of a magnetic nozzle with polytropic index varying from 1.218 in the collisionless
case to 1.239 in the highest collisionality scenario. Moreover, full-PIC simulations by
Andriulli et al. [116] demonstrated that the potential drop to infinity and therefore
Y. is very mildly affected by electron collisions against background neutrals in the

expected ranges of chamber pressure.

The electron continuity and momentum equations then read:

Oyne + V - (nete) = Sion, (5.9)
T,

0= — %Slvnge +en.Vo —en.u, X B —men.v.u,, (5.10)
e0

where S;,, is the ionization source term, and v, represents the effective electron
momentum collision frequency due to elastic collisions (with ions and neutrals) and
inelastic collisions (excitation, ionization). Collisional related parameters are defined
in section 5.A. Dividing by en.B, the latter equation can be cast as

1
0=—-VH, —u, x 1 — x u,, 5.11
B U X 1) —x u (5.11)
with x = eB/(mev,) the local Hall parameter, and H, the Bernoulli function [20],
n Ye—1
Ho=— Teo[(—"’> - 1} — e, (5.12)
Ve — 1 o

Writing e = w1+ i1y +upely and projecting (5.11) along 1), 1, and 1y yields
equations for uj., ug. and u, . as functions of the gradient of H,,

1 1 0H,

f=m e 5.13
Ule =T e a1, (5.13)
1 1 8H,
.= —Ze 5.14
M T x2eB oL, (5.14)
-1
—X 1 0H. 1
e = _— pr— e- 515
e =1 X 2eB01, X (5.15)
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In propulsive MNs, electrons must be effectively magnetized for a correct behaviour
of the device, which requires a large Hall parameter, x > 1. Otherwise, the confining
and guiding effect of the MN breaks down [121]. This condition holds in free space
even at low propellant utilization efficiencies in most of the MN, as in the region with
the highest collisionality, i.e. the nozzle throat, electrons are strongly magnetized. It
also holds in a vacuum chamber experiment, provided that the background pressure
is sufficiently low and the relevant mean free paths are long enough. In the far

plume, electron demagnetization can override this condition.

In the collisionless limit (x ' = 0) considered in [20], H, is uniform along mag-
netic lines by virtue of equation (5.11), therefore the Bernoulli function is only
determined by ¢ as H, = H.(1) and ug. is solely dictated by VH, (which points
purely in the 1, direction and can be expressed as the derivative of H, on the

magnetic stream-function 1),

T dHe TeO

— ~ 1
€ dl/) €BoR07 (5 6)

Uge =

In this strong electron magnetization limit, the maps of H, and wg. are fully de-
termined by the upstream boundary conditions alone, and can be computed before
solving any other aspect of the plasma expansion. Furthermore, u,. = 0, and u
become uncoupled from the momentum equation and the rest of the problem, ap-
pearing only in the continuity equation, and its steady-state map can be solved for
from it and the corresponding boundary conditions after a solution for n,. is found.
Indeed, noting that V- B = 0,

dn.+ B -V (%) — Sion. (5.17)

This was the limit electron model introduced in [20].

In the present work, in the understanding that y~' is small, we also solve the
electron expansion to zeroth order in xy~!. This electron solution, advantageous
from the computational viewpoint, is then used to find the ion and neutral response.
First-order corrections in x ! to the electron map are then discussed in section 5.3.4,
following the perturbative approach introduced in [16]. For this approach to remain
valid, we require that u,./ uje < 1, so that the perturbed electron streamlines do
not deviate substantially from the collisionless ones.

Two different conditions for equation (5.17) are explore, namely one imposing
local current ambipolarity LCA (7 - 1,, = 0) at the throat, and another imposing it
in the downstream boundary, observe that in the case in which ion magnetization
is low this does not imply that global current ambipolarity (GCA) is satisfied as

mentioned in [20].
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5.2.3 Numerical Integration

At this point, we use equation (5.10) to eliminate the electric potential from the
ion momentum conservation equation (5.3) . This way we can write a set of 9
differential equations for the plasma density, three-dimensional ion momentum, ion
energy, neutral density, two-dimensional neutral momentum and neutral energy,

these equations can be found in the appendix 5.B.

All of these equations are in conservative form, except for the internal energy
equations for ions and neutrals, in which the pressure gradient term in the right
hand side remains. Note that this situation is not solved by using the total energy
equation instead, as in that case the electrostatic gradient term (Joule heating term)

is present in the right hand side instead.

The spatial discretization and numerical integration of the problem follow a
Discontinuous Galerkin (DG) scheme of order p = 1 which is evolved in time with
a strong stability preserving Runge-Kutta (SSPRK) method [65] until steady state
is reached. The problem is discretized on a triangular mesh of variable size. The
cell size is chosen to be a function of dH./dy and therefore is finer in the area close
to the throat and becomes coarser downstream and in the side of the plume. The
length of a cell edge is h,,;, = 0.6 mm in the nozzle throat and h,,,, = 19 mm in the
downstream upper corner of the domain. The number of cells in the domain is 6017
are used for a total of 162459 degrees of freedom in the problem. The approach is
analogous to the one used in [28], although the problem is now extended to include
the neutral species, ion and neutral temperature, as well as ionization and charge
exchange collisions.

In summary, we write the set of partial differential equations as a single system
in quasi-conservative form:
0Q

il iy g 1
4+ V-F=G, (5.18)

where
3 3 T
Q = |:TL6, NeUs, §neT;7 Ty M U, §nnTn} )

is the vector of unknowns, F is the flux tensor, and R is the vector containing the

right-hand side forcing terms.

A major distinction with [28] is that here the system of equations is not fully
in conservative form as indicated above, and the volume integral of R requires the
evaluation of gradients of their respective pressures. These terms, while of minor
relevance (the temperatures of ions and neutrals are orders of magnitude below that
of electrons), cannot be adequately evaluated with the current DG discretization, as
elements are not continuous across cell boundaries. In this work we instead project
the pressure of ions and neutrals onto a continuous function space of order 2 and its
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gradient is then evaluated in this space. The numerical tests in the appendix 5.C
verify the suitability of this approach, and show that this projection step recovers
the expected convergence of the solution with element order p and element size h.

In order to initialize the simulation the map of dH,/dy) must be fixed before the
equations for the heavy species are solved. To this end, we calculate analytically the
value of the stream-function 1 for the whole domain. Since, in our model, the ther-
malized potential H, and electron azimuthal angular velocity eug./r = —dH,/dy
are only functions of ¢, we can fix their values everywhere in the domain by inter-
polation of their values at the inlet boundary.

Then, at ¢ = 0 we initialize the simulation with a low density background n, =
10~ %n, for the reference simulation while in the other simulations are initialized with
the solution to the reference one. Convergence is reached when the time derivative
of the solution vector calculated as

Z Z Qi1 — Qinl

t —1
V nodes Vi n+l n

with Q; the components of @, and subindex n the temporal instant; is smaller
than 1071%. Once steady-state is reached we calculate the solution to the electron
continuity equation using a DG-upwind scheme setting the appropriate boundary
conditions in order to obtain current ambipolarity in the desired boundary.

5.3 Results

5.3.1 Simulation cases

In the following, we discuss the physical and numerical setting for the different
simulation cases. In all simulations, the MN is generated by a circular current of
radius Rc = 2Ry, with Ry the radius of the plasma inlet, in our case Ry = 1.8 [cm]
which is in the range of common Helicon and ECR sources [11, 52, 50]. Both the coil
and the plasma inlet are centered at (z,r) = (0,0) and the magnetic field, is chosen
to be 200 G in that point, this value is representative of a 5.8 GHz ECR thruster
[50], nonetheless, it is comparable to other electron-driven MN thruster prototypes
[52, 44]. The applied magnetic field B,, is depicted in figure 5.1. Moreover, the
electron temperature at the centre of the nozzle is set to T,p = 10 eV and the
electron polytropic exponent to 7, = 1.2, in keeping with the discussion in the
model section 5.2.

The domain of integration is depicted in figure 5.1 along with the different bound-
aries of the simulation in which the BCs are imposed.
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Figure 5.1: Applied magnetic field B. Black lines depict magnetic streamlines, the
thicker line depicts the magnetic streamline up to which 99.8% of plasma is injected.
The purple line depicts the MN throat boundary conditions where plasma enters the
domain, the orange line depicts the symmetry axis while the green lines represent
the supersonic outlet.

In order to define all the boundary conditions we define first the utilization

efficiency with the entrance plasma conditions, as:
Mg Mg

o= o _ __ T 5.19
o mo Mo + Mo ( )

Where g is the mass flow rate for species s at the throat.

The values of the different background pressures are chosen to be in the range of
those analyzed by Wachs and Jorns [52]. The values of utilization efficiency range
from a perfect ionization case to an n, = 0.5 case that is close to the the utilization
observed in some prototypes [50, 16] although higher utilization efficiencies of around
0.6 have been observed [122].

The inlet boundary conditions are:

N (0,7) = nao10_3(""/1{0)2 e (0,7) = MyoCo(0,7)1,;
T,(0,7) = 0.078 eV \T2(0,0) = 10 eV
¢(0,7) = 0; (5.20)

where the sub-index « refers to either ions or the neutrals. Note here that the
relevant speed for ions here is ¢; = \/%T/mz while that of the neutrals is ¢,, =
\/W both of which are obtained by linearization of the system in equation
(5.18). The ions are introduced with an axial velocity equal to a fraction of their
local sound speed so that the ion Mach number is M, across the nozzle throat.

Plasma is then introduced at the nozzle with a Gaussian density profile which
falls three orders of magnitude across the radius of the inlet. The values at the
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centre of the throat for ion and neutral density are set according to the utilization
efficiency of the source while keeping a fixed mass flow rate of 1y = 0.015 mg/s
of xenon in the throat. As in previous work [28], the Gaussian inlet profile is
extended up to the border of the coil (r = 2Ry) to avoid sharp gradients in the
inlet boundary, however the ion flux entering the domain through the boundary
from r = Ry to r = 2R, represents less than 0.2% of the total flux, and therefore
this does not change noticeably the global dynamics of the nozzle. Additionally,
the neutral background temperature is chosen to be T, = 900 K. The choice of a
temperature higher than room is influenced by two factors. First, neutrals have a
relatively large residence time in the ionization chamber and are therefore expected
to thermalize with its wall which may be heated due to ion bombardment and other
processes, in addition, the multiple wall-recombination and reionization processes

will also rise neutral temperature.

In order to gauge the effect of background pressure and neutral density we per-
form simulations varying both p, and 7, while keeping all other free parameters of
the simulations fixed. A list of all the simulation cases can be found in the first few
rows of table 5.1 in which the values for n, and p, are specified. There, simulations
are labelled as R for the reference simulation without background pressure and with
perfect utilization, U1, U2 and U3 designate the simulations with different source
utilization efficiencies, while B1, B2 and B3 designate the simulations with different
background pressures. Finally, simulation UB includes both effects.

The sonic point in the magnetic nozzle of EPTs is usually argued to be located at
the nozzle throat [103]. However, some experimental measurements have shown that
sonic transition happens downstream from the throat [123, 51, |. On the other
hand, some simulations claim that the sonic transition is not strongly influenced
by the position of the magnetic throat and can indeed take place upstream from it
[110]. Some collisional simulations only solving the divergent part of the magnetic
nozzle show a local drop in the ion velocity close to the throat [116]. This artifact
is produced by the incorrect matching of the ionization chamber and the plume, in
order to avoid this, M;y is chosen such that the expansion is monotonic in the whole
domain, in our case this happens for M;g = 0.4. On the other hand, neutrals are
introduced with an axial velocity equal to their sound speed and their density is also

set to a Gaussian falling three orders of magnitude in the side of the nozzle throat.

5.3.2 Response of highly magnetized electrons

As described in subsection 5.2.2, our MN model employs a massless, collisionless
electron solution to integrate the ion and neutral equations. In a latter section 5.3.4,
the leading order corrections due to collisions and electron inertia are evaluated.

The main advantage of this approach is that it allows us to solve the electron
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Simulation | R | Ul U2 U3 Bl B2 B3 | UB

Mo 1.0 | 0.9 0.7 0.5 10 1.0 1.0 | 0.5
py[mPa] 0.0 | 0.0 0.0 00 | 0.5 20 4.0 | 4.0
Neo[107m 3] 3.00 | 273 217 159 [ 3.00 3.00 3.00 | 1.59
N0 [10'7m ] 0.00 | 1.36 2.73 6.80 |0.402 1.61 3.22 | 6.80
ui(z1) [km/s] 7399 | 7.374  7.369  7.363 | 7.343 7.187 6.983 | 6.938
mi(z1) /M 1.000 | 1.008  1.023 1.039 | 1.013 1.056 1.121 | 1.126
Ros(21) [em] 11.78 | 11.87  11.87  11.96 | 12.05 12.59 13.50 | 13.41
P [mW] 191.2 [ 1633 1124  68.48 | 191.3 190.5 189.5 | 68.09

Py [mW] (eq. (5.27)) | 0.000 | 1.523  3.737  4.719 | 6.148 26.50 56.80 | 30.81
Py, (mW] (eq. (5.24)) | 191.2 | 1648 1162  73.20 | 1974 217.0 246.3 | 98.90
P.oi/ P 0.000 | 0.009 0.032  0.064 |0.031 0.122 0.231 | 0.311

5, (eq. (5.28)) 12 | 1.201  1.203 1206 |1.204 1.218 1.244 | 1.249
F(0) [uN] (eq. (5.30)) | 15.78 [ 13.81  10.87  7.92 | 15.44 14.97 14.45| 7.73
F.(0) [uN] (eq. (5.30)) | 46.12 | 41.91  32.08  22.39 | 46.61 47.28 48.04 | 22.6
F,(0) [uN] (eq. (5.30)) | 0.0 | 0.56 168 2.8 | 00 00 0.0 | 2.87
AF, [uN] (eq. (5.31)) | 70.0 | 67.8 545 405 | 71.8 734 749 |40.11
AF, [uN] (eq. (5.32)) | -42.9 | -39.5  -31.6  -234 | -43.3 -438 -445 | -23.7
AF, [uN] (eq. (5.33)) | 0.0 |-0.0169 -0.0411 -0.0510 | 0.278 1.13 224 | 1.04
F [uN] (eq. (5.30)) | 89.0 | 846 675 502 | 909 929 952 | 52.6
nun (eq. (5.34)) 0.915 | 0.912 0.851  0.721 | 0.934 0.897 0.840 | 0.590
rkun (eq. (5.35)) 0.851 | 0.951 1.178  1.439 | 0.889 0.924 0.963 | 1.418
kp (eq. (5.35)) 1.000 | 0.991  0.968  0.936 | 0.969 0.878 0.769 | 0.689
kp (eq. (5.35)) 1.076 | 1.075  1.074  1.072 | 1.085 1.106 1.134 | 1.207

Table 5.1: Free parameters of the simulation (first four rows) and relevant global

performance parameters. In the fourth line n, ., represents the neutral density
at the center of the throat in simulations Ul, U2, U3 and UB and the neutral

background density in simulations B, B2 and B3, in all cases this is the maximum

neutral density encountered in the domain.
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Figure 5.2: Maps of H, and electron azimuthal angular velocity wug./r fixed by the
throat boundary conditions and the applied magnetic field in the y=! = 0 limit.

momentum equation algebraically to find the map of H, from the upstream boundary
conditions, as this quantity is conserved along magnetic streamlines by virtue of the
collisionless limit of (5.13). In turn, this fixes the electron azimuthal velocity, which
is obtained from (5.14). Figure 5.2 shows the maps of H, and ug,, indicating that the
resulting electron azimuthal velocity is positive everywhere in the domain resulting
in a diamagnetic azimuthal current and therefore radial confinement and positive
magnetic thrust [16].

5.3.3 Ion and neutral response
Remarkably, the ion expansion in the collisionless regime (R) and in the various
explored collisional cases (U1, U2, U3, B1, B2, B3, U B) are very similar on first sight.

Figure 5.3 (a) shows the electric potential in simulation UB. As in previous
studies, it is found that the potential drops axially and radially in the main plume.
Here, we find that for the chosen boundary conditions, the potential also grows
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radially in the peripheral region. A low potential region exists between the main
plume and the lateral part. Figure 5.3 (b) shows the ion current density (J;) in the
meridian plane. Most of the ion current is carried by the main plume and is inward-
detached with respect to magnetic lines, meaning that the divergence angle of the
former is less than that of the latter. The lower density plasma in the peripheral
region is originated at the lateral of the throat, as we extend the plasma inlet up to
the coil location; and by ionization events taking place in this region, this numerical
artifact is not considered to affect the solution strongly as only 0.2% of the mass
flow at the throat is provided by the periphery of the inlet (radii between Ry, and
2Ry ).

Figure 5.3 (c) and (d) show the collisional frequencies for ionization and charge-
exchange. While ionizing collisions are more prominent in the surroundings of the
nozzle throat, they decrease rapidly away from the source. CEX collisions, on the
other hand, remain same-order everywhere in the domain, and thus represent the
main collisional contribution on the heavy particles downstream and in the periph-
ery. Even though it is not shown here, ion azimuthal velocity is negligible compared
to its electron counterpart in all simulations as is expected for T, > T; when ions
are introduced without rotation[20)].

As mentioned before the expansion is very similar in all the simulated scenarios.
To quantify the effect of collisions on the radial behaviour of the plume, we show in
table 5.1 the radius of the streamtube containing 95% of the ion current at z = 2.
This measures the radial expansion of the plume and is seen to increase by almost
15% in the simulations with the highest background pressure.

To further appreciate the effect of collisionality in the expansion we show, in
figure 5.4the electric potential evaluated in two circular arcs at distances 6 R, and
10Ry from the centre of the throat, these arcs are the ones depicted in red in figure
5.3 (a). Radially, all the simulation cases exhibit a potential drop towards the side of
the main plume and a sudden increase in the external part which is similar to struc-
tures observed in several experiments [125, |. Specifically, Little and Choueiri
[80] argued that this structure is generated by ions with sufficient radial velocity
overshooting the plasma-vacuum interface unlike the strongly magnetised electrons
leading to a positive space-charge build-up and that finite electron Larmor radius
effects (FELR) reduce the onset of this potential wall. In our case, this happens
due to the ions coming from the side of the throat reaching the peripheral region
leading to a spuriously high plasma density there. We also observe that increasing
the presence of neutrals both through an increase in p, and a decreased 7, reduces
the lateral potential drop. This decrease is more apparent in simulations B3 and
UB than in U3 as in this last case neutral density decreases very rapidly away from
the source and therefore collisional effects are only relevant in the surroundings of
the throat. For this same reason, simulations B3 and U B show very similar profiles,
the strong rarefaction of the neutrals coming from the source makes background
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neutrals dominant in simulation UB.

As expected from the setup of the different simulations, neutrals behave very
differently in each of the scenarios. Figure 5.5 (a) shows the on-axis neutral density
normalized with its maximum value. Simulations B3, U3 and U B show, respectively,
an essentially constant neutral background, the expansion of injected neutrals and

the injected neutral density decreasing until the background density dominates.

On the other hand, plasma density in figure 5.5 (b) is seen to follow the same
trend in all simulations, this agrees well with [110]; as ¢ is uniquely determined by
the ratio m./neo in equation (5.12) this implies the potential fall is very similar in
all cases. Ton velocity is seen to increase to roughly seven times its initial value as
potential energy is converted into ion kinetic energy, however, CEX collisions tend
to slow down the ion fluid, for this reason, velocity profiles are seen to follow a trend
similar to the radial potential in figure 5.4, this is, we see almost matching tendencies
for simulations R and U% and for simulations B3 and UB respectively, with the last
two showing a 6% decrease in ion velocity with respect to the reference one, this
does not imply a loss of momentum in the plasma as the loss of ion momentum
via CEX leads to an equal gain of momentum by the neutral fluid. In table 5.1
we clearly observe that terminal velocity decreases monotonically with increasing
pp and decreasing 7,. This loss in ion velocity is noticeably smaller than the one
reported in [52] which is of the order of ~ 20% for similar background pressures. PIC
simulations[] 16] also observe a higher velocity loss of ~ 22% albeit using a higher
background pressure of 10 mPa, higher power input and electron temperature. As
a matter of fact extrapolating our data to the pressures used in the aforementioned
study yields a decrease of 14% in final ion velocity. This is mainly due to the transfer
of ion momentum to the neutral fluid via CEX collisions and to a minor extent due
the addition of slow ions by virtue of ionization collisions. This gain in ion mass
due to late ionization in the plume is given by

/ SionmidQ, (521)
Q

myo Mo

where 1; is the integral of the ion flux leaving the domain and ;g is the ion mass
flow entering the domain at the throat given. This gain in ion mass flow is observed
to be up to 12% of the initial mass in the scenarios with the highest background
density, here () represents the whole domain.

Finally, in figure 5.5 (d), we plot the temperature of the ion fluid. Clearly
ions remain cold in all cases in comparison to the electron fluid, the highest ion
temperature is reached in simulation B3 with T; .., = 0.67 eV compared to an
electron temperature of 4 eV in that region. This ion temperature are comparable
tot hose observed by [18]. Neutral temperature, on the other hand, is lower than
1100 K in all the simulated scenarios.
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Figure 5.3: Map of electric potential ¢, ion current in the meridian plane and ion-

ization and CEX collision frequencies for the U B simulation. Magenta lines depict

the streamlines of ion current.
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Figure 5.4: FElectric potential measured in the arches depicted in figure 5.1 for
simulations R, U3, B3 y UB.

5.3.4 Role of collisions on the electron fluid

The collisionless electron model has allowed us to find an algebraic electron solution
as in [20]. We next revisit this assumption discuss the effect of collisions on the
geometry of electron streamlines, on the stream-wise conservation of H., and on the
the electron heat flux at the throat,.

In order to evaluate the validity of our approach with the electron solution we
come back to equations (5.14) and (5.15). We recall that the collisionless model
yields ug. according to equation (5.16), and u . = 0. The inclusion of weak collisions

adds a correction to this solution, scaling with the inverse Hall parameter y~! as:

ml/TO
Auj. =Y tuge ~ ——2 5.22
Uie =X~ Gpap (5.22)
m2y2T0
A 6:_—2 o~ e 5.23
ug X e~ SR, (5.23)

where ug, on the right hand sides is the one corresponding to the collisionless solu-
tion. For reference, figure 5.6 displays the map of ! in the UB simulation. This
parameter remains small everywhere, even in this low-utilization and relatively-large
background pressure case. Equation (5.22) states that electron collisionality induces
a first order correction Au . that points radially outward, i.e., it works toward in-
creasing the plume divergence angle [16]. The correction Aug, is only second order,
and implies a negligible decrease of ug, in the range of interest.

We shall therefore only discuss the effect that Au, . has on the expansion and
the divergence of the plume this was already partially assessed. Indeed, this effect
depends on the tangent ratio Au./uj., which can be assessed using the . solution
of the collisionless model. Here we remind the reader that u. depends largely on
the boundary conditions used to solve the electron continuity equation (5.9) [20].
To illustrate this, we consider two distinct boundary conditions of interest with the
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Figure 5.5: On axis values for neutral density, ion density, ion velocity and ion

temperature. Colour code is the same as in figure 5.4.

81



CHAPTER 5. NEUTRAL DYNAMICS AND FACILITY EFFECTS IN MAGNETIC NOZZLES

F 1073
25 E
20
L 10—4
'€ 15 .
2 >
10 10—5
5
1076

5 10 15 20 25
z [cm]
Figure 5.6: Inverse of electron Hall parameter for simulation UB withp, = 4 mPa

and 7, = 0.5 and a maximum magnetic field of 200 G in the center of the nozzle
throat.

simulation UB: (1) local current ambipolarity (LCA) conditions imposed at the MN
throat, representative of the operation of a short plasma source firing in space, and
(2) LCA imposed at the downstream and lateral boundaries, representative of a
device operating in a vacuum chamber with dielectric walls (or of a plasma source
with MN used for material processing applications) [20]. Since LCA is not satisfied in
the bulk of the plasma plume (because ions separate inward from the magnetic lines
while electrons remain magnetized), these two conditions result in rather different
maps of u|.: conditions (1) lead to a relatively large wj. in the plume periphery,
whereas conditions (2) concentrate a larger u. in the core of the exhaust.

Consequently, the tangent Au, ./ e remains rather small in the whole simulation
domain in case (1), while a noticeable tangent develops in the plume periphery
(where plasma density is nevertheless small) in case (2). This is an indication that
a MN operating in free space and in a vacuum chamber can differ in the resulting
plasma divergence angle, especially if the vacuum chamber wall material imposes
the local current ambipolarity downstream. These two cases are depicted in the
first row of figure 5.7 which shows the in-plane electron current j, = —en.t,.; the
resulting total plasma currents, 7 = j. + J; are shown in the second row. It can be
noted that the magnitude of j, (and, accordingly, 7) is large in the periphery of case
(1), as dictated by the boundary conditions at the throat; as the plasma density
in this regions is low, this translates into a few electrons having a large u. in this
region [20]. In contrast, j, and wu|. are negligible in the periphery in case (2). The
geometry of the j lines in case (2) is the consequence of the rectangular shape of
the domain, as the boundary conditions demand that these lines be tangent to the
downstream and lateral edges (indeed, the change of behaviour across the magnetic
lines that connect to the corners of the domain, in white, is noticeable).
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Figure 5.7: In-plane electron and total currents in simulation UB with ambipolar-
ity imposed at the throat (left column) and ambipolarity imposed in the outflow
boundaries (right column). In the right column white lines depict magnetic lines
crossing the vertices of the domain.

With regards to the validity of using the collisionless electron solution to deter-
mine the electron properties and the electrostatic potential map ¢, we conclude that
boundary conditions of type (1) are better suited for this type of approximation,
while the accurate solution of plasma expansions under type (2) conditions likely
requires either to include this correction iteratively into the electron maps, or a
complete, collisional electron model. Type (1) conditions better approximate those
of a plasma plume expanding into space, although we clarify that the boundary
conditions to be imposed in that case do not necessarily need to enforce LCA at the
throat: the only strong requirement is that of global current ambipolarity (GCA),
i.e., that the integral at the exit section of j vanish. We also conclude that the effect
of collisions is expected to lead to a larger plume divergence increase in situations
better described by conditions (2).

Analyzing the scaling of equations (5.22) and (5.23) we observe that the relevant
ratios for both collisional corrections Au . /uje o x; ' By Y and Auge/uge o< x5 2 scale
with the squared inverse of By; observing that the maximum value of x_ ! is around
10~? we conclude that a reduction of one order of magnitude in By would make the
perpendicular drift of the electrons comparable to their parallel velocity. This would
imply By ~ 20 G which is, in fact, a low magnetic field for the typical operation
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Figure 5.8: Axial value of H, accounting for collisions in simulation UB with am-
bipolarity imposed in the downstream boundary. Colour code is the same as in
figure 5.4.

conditions in EPTs, however the accumulated effect of the deflection of electron
streamlines could appear at higher magnetic fields. Even lower values of By would
be necessary to affect the azimuthal velocity of electrons noticeably.

The second effect of collisions on the electron model stems from the parallel
dynamics, as shown in equation (5.13): when parallel collisionality is included, H,
is not conserved along magnetic streamlines anymore, and moreover, 1, becomes
weakly coupled with the rest of the problem. The decrease of H. along magnetic
lines has the double effect of modifying wug., which depends on the perpendicular
gradient of H,., and reducing the total potential fall across the nozzle. These effects,
however, are very minor in the simulation cases explored, as can be inferred from
figure 5.8 which presents the variation of H, along the axis of the MN (with LCA
imposed downstream, which gives a larger decrease). The small effects of collisions
on H, are more prominent when background pressure is included, as a matter of fact
one can observe that there is a faster decrease near the throat which does not plateau
in the simulation domain when background density is included. The smallness of
variation validates the modelling approach followed in this work for electrons.

Finally, another assumption of the electron model is that of negligible inertia
(which are first-order finite Larmor radius effects). Given that ug. can be large and
that for boundary conditions of type (1) the parallel electron velocity u). can become
large in the periphery, it is reasonable to question the validity of this assumption.

To gauge the influence of finite electron inertia, we proceed similarly to [127] and
compute the following normalized electron inertia term from our zeroth-order solu-
tion:
o |V (meneueu,)|
Vel

This compares locally the effect of electron inertia against the electron pressure force.
This term is shown in figure 5.9 for simulation UB and for both electron boundary
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Figure 5.9: Absolute value of inertial terms of electron momentum equation.

conditions. In the case with LCA imposed at the throat, €;,.. is only greater than
1073 in the periphery of the plume, where the plasma is very tenuous and electron
pressure negligible. As the plasma density is very low in this region, this error has
a presumably small effect on the computed results. In the case in which LCA is
imposed in the downstream boundary, €;,., is seen to reach values of the order of
1073 — 1072 already in downstream region of the main plume, indicating that, while
still negligible, will affect the plasma expansion in the main jet earlier than in the
upstream LCA case. In passing, we note that in order to make a comprehensive
discussion of FLRE one would need to asses the effect of the so called gyroviscous
force which is simply the divergence of the off-diagonal terms of the pressure tensor
in a magnetized plasma also referred to as the gyroviscous tensor. A full study of
this effects is not performed here as the complexity of these terms deserves a detailed
study [128].
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5.3.5 Effect of collisions on the electron power balance

The total power flowing into the MN F;, is the sum of the convective power carried
by each of the species and the electron heat-flux at the throat,

F)i = Pconv + Qe(b (524>

where the convective power is:

5
Pconv = / _neOTeOuziOdS
So 2

i 5
/ [ﬁneouiio + _neoﬂouzio} dsS
o L2 2

i 5
/ [ﬁnnouino + —nnoTnouzng] dsS (525)
s L 2 2

Note that the contributions due to the ion and neutral temperature, and due to
neutral kinetic energy, are typically negligible.

From the viewpoint of electron thermodynamics, it is noteworthy that the cho-
sen polytropic electron cooling model implies the existence of a nonzero heat flux
Q. into the plume that maintains that electron temperature profile in the plume,
which is greater than in the adiabatic limit and can be calculated from the total
balance of power in the plume [92], this heat flux corresponds to the first term in
equation (5.26). In this study we are assuming that the the polytropic index and
electron temperature at the throat are kept constant in all of the simulated sce-
narios. However, the existence of inelastic collisions in the plume removes energy
from the electron population. The balance of power demands that the value of the
electron heat flux at the MN entrance increases with respect to the collisionless case,
to maintain the same v, and T,q,

3 m (5/3 =7
Qe = iTEO%E(—% —

%

) + Pou (5.26)
where the energy lost to inelastic collisions in the plume can be calculated as:
Pcoll = / SionEineldQ' (527)
Q

This power loss of the electron fluid is gauged a posteriori in our work and is, in
the highest loss scenario, up to 31% of the inlet energy flux. Alternatively, using
equation (5.26) , defining Q,; = Qe — Peoy and assuming the input power had been

kept constant, power balance would require:

- 3 m<w3—%)
Qeo - 9 eOnum :Ye 1

)
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and thus we can find the effective polytropic cooling exponent of the expansion:

2m;
5_|_ er'O
- Teonum
Ye = " =~
3 + 2miQeO
Teonum

(5.28)

which is reported in table 5.1. This computation allows us to assess what is the
expected change in the polytropic index as the importance of collisions in the plume
varies; we note that 7, increases slightly with 7,0 and py, indicating that, while
minor — values in all the investigated scenarios are in the range of those reported
in the literature [120]— collisions displace this parameter away in the direction of
the adiabatic limit 4, = 5/3.

With this variation in mind, we can now assert what would be the effects of

inelastic collisions, if we had fixed P, rather than 7,y in our simulations.

As P,y / Py, increases, the initial electron temperature T,y would need to decrease
to maintain the power balance. Additionally, the larger polytropic index 7, would
lead to a faster drop of the electron temperature downstream and a reduced potential
drop to infinity, which is

Ap=——1¢ (5.29)

thus reducing the capability of the nozzle to accelerate the ions, and ultimately,
thrust. As a matter of fact, for simulation U B this would imply eA¢/T.y ~ —5 in
comparison to a value of >~ —6 in simulation R. In our T.y-constant simulations, this
effect inelastic energy losses on thrust is not present, as P, is simply compensated
by the larger P;, to keep the electron temperature at the entrance constrained. Nev-
ertheless, the relevance of this balance is evident in the efficiency figures computed
in section 5.3.6.

5.3.6 Propulsive performance

The sum of the steady-state momentum conservation equation for each species(5.10),
(5.3) and (5.6) leads to an equation for the conservation of total momentum in the

nozzle:
V- (neuiu; + npup,uy, + p) = ne(u; —u,) X B,

where p = p. + p; + p» is the total pressure in the plasma. The integral of the axial
component of this equation renders the total thrust produced by the nozzle up to
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the end of the domain:
F=F(0)+ Fiag

= / (mineu?; + min,u?, + pe + p; + pn)dS
So

+ /(—jeBT)dQ, (5.30)
Q

This is, thrust can be seen to be the sum of two contributions, the internal thrust
produced in the source and equal to F'(0) and the external thrust produced by the
magnetic force that the plasma exerts on the coils of the thruster. Both of this
contributions can be further decomposed in the different species. The share of the

external thrust for each species is given by:

AF@ = /<_enelz : V¢ +j9iBr
Q

+ Sionmithy, + Scpxmi(, — u;))dQ (5.31)

AFe - /<€nelz * ng + j@eBr - meneyeue)dQ (532>
Q

AF, = / (= Siontitt — Scxmi(aun — ,))A0 (5.33)
Q

These contributions can be found in table 5.1. We observe that, due to the subsonic
velocity of the ions at the throat, the internal thrust is mostly delivered by the
electron pressure with the neutral contribution being one order of magnitude smaller
even in the lowest utilization scenario. The working principle of the magnetic nozzle
observed in [20] holds in all the simulation cases: the flux of electron momentum
decreases during the expansion due to their loss of thermal energy which, in turn, is
converted into ion kinetic energy via the ambipolar electric field. For lower values
of my0, both AF, and AF; are seen to decrease in magnitude due to the reduction
in available energy in the form of electron pressure. Increasing p, on the other
hand, results in an augmented effective mass flow rate of ions and electrons due
to ionization, which leads to an increase in their momentum, even if ion velocity
is reduced. Neutral momentum gain is always small compared to the electron and
ion one being essentially unaffected by n,0; however, when background pressure is
increased, the transfer of momentum to neutrals via CEX is evidenced. Indeed,
CEX collisions do not directly incur in a loss of thrust as suggested in [116], since
they merely transfer momentum from the ions to the neutrals. CEX collisions cause
the entrainment of neutrals by the ions, and has the same effect as an increase in

the total mass flow (total thrust increases, while ion velocity decreases).

We remark that our results predict the increase of thrust evaluated at the end
of the domain F'(zy) with increasing p,. We find that this increase is contingent on
keeping T,y constant in our parametric analysis. As indicated in section 5.3.4, as 1,
is decreased and as py is increased, this requires increasing the power input to the
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device. Keeping P;, constant instead would result in a different behaviour of F(zp).
This may explain why finding experimental trends with p, is a delicate matter,
as they may depend on the detailed power balance of each setup. Indeed, thrust
increase with p, is reported in Hall thrusters as a steady discharge voltage can be
maintained during operation [129], while the contrary is found in EPTs [1 11, 52, 20].

A more robust performance figure that is not affected by what is constrained to
be constant in the analysis is the MN efficiency, defined as

F2
21 P,

NMN = (5.34)

Crucially, nysn decreases in all simulations with the introduction of neutrals from any
source, either due to an incomplete utilization at the entrance, or due to background
pressure. In order to analyze the different mechanisms of performance loss in the
nozzle we expand this efficiency as

mi Pr F? Ff?
1o Pi FY 210 P,

= NuwokKPRKFKMN, (535)

"MN =

where thrust forces are evaluated at zp, and P, = P;, — P.o; is the inlet power
disregarding collisional losses. In the factorization shown in 5.35 kg is the fraction
of the force carried by the ion fluid while s,y incorporates several aspects of the
ion acceleration such as the divergence and the dispersion efficiencies.

This factorization lets us identify two different trends. In the first ones, the re-
duction in efficiency is produced by the drop in 7,. This is, even if the ions expelled
by the source are accelerated efficiently (kj/y increases while kp and kp stay rea-
sonably unchanged) these ions are not accelerated efficiently enough to compensate
for the loss of ionization in the source. On the other hand, in the simulations with
increasing py, kp is seen to grow when raising chamber pressure, this is, the ions
the fraction of the force exerted by the ions is seen to decrease as the neutrals are
entrained by CEX collisions; moreover, xy;y is seen to increase due to the increased
mass flow of plasma which is strongly related to the enhanced utilization efficiency
given by (5.21). This effect might be responsible for the rise in performance in Hall
effect thrusters [31] in poor vacuum conditions, however, in MNs the power needed
to sustain the discharge grows quickly with background pressure and therefore the

term kp decreases hindering the efficiency of the nozzle [114, 52].

Therefore, the decrease of efficiency can be attributed to inelastic collisions in-
creasing severely the power needed to sustain discharge while the increase in mag-
netic thrust due to collisions does not increase enough to compensate this effect.
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5.3.7 lIon distribution Functions

Some helicon thruster experiments with non-negligible background pressure show
that the ion velocity distribution function (IVDF) is double-peaked [130, 52, 131].
The main peak is produced by the primary or beam ions expelled directly by the
source, while a lower energy peak appears due to late ionization in the plume and
other collisional effects in the plume region, which depend on the chamber pressure
an the initial utilization efficiency. In some cases and depending on the position in
the plume, the slow ions may become predominant [52].

Here, we present a method to estimate the IVDF of the ions that underwent
collisional processes in the nozzle. This method is, of course, not self-consistent as
the distribution function is a fully kinetic feature that can only be resolved with
kinetic models. It is, however, an interesting addition to our analysis with a com-
putationally cheaper fluid model.

We limit our discussion to the axis (r = 0). The rate at which slow ions
are produced due to ionization and charge-exchange collisions is given by S(z) =
Sion(2,0) 4+ Seez(2,0), per unit volume and unit time. Slow ions created at a po-
sition z reach a downstream measurement point z,, with a velocity v given by
v? = 2¢e[p(z) — ed(zm)]/m;. This expression sets a univocal relation between v
and z, and differentiating we find vdv = e¢’(2)dz/m;. Then, the flux of ions g;(v)
at the measurement point satisfies the 1D continuity equation

gi(v)dvdA,, = S(z)dzdA, (5.36)

where dA is the area of an infinitesimal streamtube, and dA,, its corresponding area
at z,,. Assuming for simplicity that the generated slow ions accelerate downstream
and expand like the corresponding magnetic tube, dA,,/dA = B(z,)/B(z), and
using the relation between dv and dz through ¢,

(o) — B(zm) mvS(2)
M =BG e e)

(5.37)

This is the slow ion flux distribution function that a device like a retarding potential
analyzer can measure in the plume of a MN. The corresponding density distribution
function at point z,, is then:

B(zm) m;S(2)

HO =36y e 539

Figure 5.10 shows the distribution functions for ions obtained as described above for

the simulations with varying background pressure, along with the VDF of a drifting
Maxwellian with total density and velocity equal to that of the ions at z,, = z;, and
temperature equal to their initial temperature. We observe that, in simulation B3,
the maximum in the distribution of slow ions is one order of magnitude smaller than

that of fast ions.
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Figure 5.10: Recovered distribution functions at z = zy. Simulations B1, B2 and
B3 are represented by red dotted, dashed and solid lines respectively while the blue
dotted, dashed and solid lines show simulations U1, U2 and U3, respectively. The
black line represents the VDF of a drifting Maxwellian corresponding to the injected

ions in simulation R.

All simulations with collisions show that f; increases near the beam velocity.
These ions are created by the high collisionality around the nozzle throat where
plasma density is highest and are, in fact, responsible for the slight warming of the
ion fluid observed in simulation U3 (see figure 5.5). This increase is the only remark-
able feature in simulations U1-U3 without background pressure: the net effect of
collisionality in these cases is to skew the IVDF of the beam toward lower velocities,
what is equivalent to having a wide effective ionization region that extends from
inside the source to the near plume. However, in simulations with background pres-
sure, the IVDF presents a secondary peak at low velocities. Indeed, these are ions
that result from the sustained ionization and charge-exchange collisions throughout

the plume, this is observed experimentally in [52].

We note however that, in our estimation of the IVDF at the end of the expansion,
slow ion populations are seen to be one order of magnitude less prominent than the
fast ions even in the highest background pressure scenario at 4 mPa. This contrasts
with the measurements of [52] where, downstream the slow ions are comparable to
the fast ion beam coming from the source even with background pressures of 1.73
mPa. This difference can be attributed to the paraxial expansion we have assumed
for the slow ion population, with dA,,/dA = B(z,,)/B(z).

5.A Collision models

The simplified collision model employed in this work includes ionization, excitation,
ion-neutral charge exchange, electron-ion and electron-neutral. In the following we
describe the models used for the cross section of the different collisions included in
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this work on each species. Following [132] we take the ionization source term to be:
Sion = Nelion = NeNinCelion (539)

with ¢, = /8T, /mm, and cross section

T.E;
(Te + E)?

—E;

) exp(——), (5.40)

Oion = UionO(l + T

where F; is the first ionization energy for xenon (12.1 eV) and o0 = 5 x 1072°m?.

On the other hand, the source term arising from charge exchange collisions reads

[133]:
Scex = NWeEx = MNpCin0CEX, (5-41)

with ¢;, = |u; — u,| and the collision cross-section given by:

Cin
OCEX = OCExo(l — 0.21ogy 1k—m/s>’ (5.42)

where ocpxo = 81 x 1072%m?.

We gauge the effect of collisionality in the electron momentum a posteriori. To
this end, elastic electron-ion and electron-neutral collisions as well as ionization, and
excitation collisions could be included in the electron momentum equation. However,
the collisional rates of excitation and ionization are observed to be at least one order

of magnitude smaller than those of elastic collisions [108] and therefore we take:
Ve ™ Ven + Ve (5.43)
These collision frequencies are taken from [132] and [134] respectively:
Ven = NinCeOen With ey = 27 x 10720 m?, (5.44)
Vei = NeRe;, with 10_1§$3S_1 = <2;:/>3/2 In A, (5.45)
log A ~ 9+ %log[(l()::n?’> (iﬁ/)] (5.46)

Finally, the effective electron energy loss due to inelastic collisions —ionization and
excitation— is grouped together and taken to be:

1 2F;
Einel = Ez |:2 + Z exp <3Te >:| . (547)
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5.B Full model equations

The ion and neutral equations to be solved by the model are the following:

8tne + V- (neui) = Siona (548)
1 e
8tneu'i + V- (neuiui + _ne(T‘i + Te)) - o (uz - ue) x B + Sionun + SC’EX(U'TL - uz)
m; m;
(5.49)
3 5
8t 5”61—% +V- Eneﬂui =Uu;- Vne,-z—;
3 m; 9 3 m; 9
+ Sion ETn + 7(% —u,)” ) + Scex §(Tn -T;) + 7(%‘ —uy) (5.50)
ony, + V- (npuy) = —Sion, (5.51)
1
onpu, + V- (npuyu, + —n,Ty) = —Siontn + Scpx (w; — w,) (5.52)
my
3 5
3 3 m; )
= SiongTn + Scex 5(7} - T,) + 7(“" —u,) (5.53)

Note that the electron azimuthal velocity appearing in (5.49) is obtained from

the azimuthal electron momentum equation in the collisionless limit (5.16).

5.C Caell size, order and domain convergence

Discontinuous Galerkin methods are, by construction, locally conservative for sys-
tems of hyperbolic equations [39]. However, as explained previously, we have intro-
duced some minor, yet non-conservative terms in the discretization of the energy
equation for both ions and neutrals 5.2.3. In this regard, our integration method
departs from the typical DG methods and therefore we find necessary to check the
effect of h (cell size) and p (polynomial order) refinement in our solution. To this
end we run simulation UB in a smaller 5 x 3 (in units of Ry) domain with three
different cell sizes and for polynomial orders 0 and 1. We then run a fifth simulation
with an even finer cell size and order 1 elements, and take that solution as exact.
In table 5.2 we show the global L error of the different simulations. We observe a
convergence rate of 1.6 for the order zero discretization and 2.2 for the order one
discretization; the expected asymptotic convergence rate for DG methods is O(h?*1).

Furthermore, we test the possible effect of a domain size change by running
simulation UB on a 10Ry X 10Ry domain with equal cell sizes as the original. Table
5.3 shows the final velocity and electric potential for the two domain sizes evaluated
in the axis at 2 = 10Ry. The change among them is around 2% for the electric
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Polynomial degree | Cell size | Ly error | Convergence rate
0.2 0.0041
0 0.15 0.0025 1.6
0.1 0.0014
0.2 0.0025
1 0.15 0.0013 2.2
0.1 0.00053

Table 5.2: Summary of convergence results for cell size and polynomial degree.

Domain size
Percentage change
10 x 10 | 15 x 15
ed/Teo(z = 10Ry) | -3.48 -3.42 1.7 %
Uyi/cso(z = 10Ry) | 2.422 2.430 0.32%

Table 5.3: Effect of domain size on main plasma variables.

potential and 0.3% for the final velocity, so we consider the domain size to play a
small effect on the solutions discussed in the main text.

5.4 Summary

A two-dimensional, three-fluid model based on discontinuous Galerkin finite ele-
ments has been used to simulate the effects of non-ideal propellant utilization at
the source 7,09 and background pressure p,, on the plasma expansion in a MN. Ion
expansion is seen to change little in the range explored; the main effect of collisions
with neutrals are a mild decrease in final ion velocity and a small increase of di-
vergence angle. lons are seen to develop some temperature due to collisions with
neutrals, up to ~ 1 eV in one of the simulation cases; an estimation of the resulting
ion velocity distribution function has revealed the formation of a low-energy ion
population, with distinct characteristics when varying n,o or py,. These effects are
consistent with experimental observations [52] and are more marked in those cases
that feature a background pressure, compared to those with an imperfect utilization
efficiency. Indeed, in simulation U B, the role of background neutrals outweighs that
of the neutrals coming from the source, whose effect is essentially restricted to the

near plume.

One should analyze the effect of ion-neutral collisions according to their type
(ionization, CEX) and the origin of the intervening neutrals (imperfect utilization,
background density). The effect of near plume ionization of neutrals escaping from

the source can be assimilated to a late increase in utilization efficiency. However, ions
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generated outside of the source do not see the full potential drop, and are therefore
less accelerated by it, lowering the fluid velocity of ions. Analogously, CEX collisions
with escaping neutrals transfer momentum from the ion fluid to the neutral fluid, and
play a similar role to having an increased ion mass . The momentum of the resulting
fast neutrals contributes to thrust, while the resulting slow ion can re-accelerate by
the remaining potential drop, and continue to contribute to propulsion. We note,
nevertheless, that slow ions in the plume (be they the result of ionization or CEX)
are prone to be accelerated radially faster than ions, and thus raise the ion fluid
divergence angle. On the other hand, when the new ions from ionization or the
fast neutrals from CEX come from the background density, they provide a ‘free’
additional mass flow rate to the jet, and can affect the conclusions of experimental
studies if this effect is not taken into account.

Collisions are seen to affect somewhat the electron-confining potential barrier
that exists at the plume edge, lowering its strength. Such barrier, which requires
modelling the main and the peripheral plasma to be successfully studied, has been
observed experimentally[30]. While our simple electron model only takes into ac-
count collisions perturbatively, our analysis has shown that electron streamline di-
vergence is expected to increase due to collisions, albeit only minimally for upstream
LCA boundary conditions (the ones that more closely resemble in-space operation).
The effect becomes more noticeable at rather low magnetic field strengths and for
LCA conditions downstream (representative of a plume expansion limited by a di-
electric wall). This last aspect highlights the role another facility effect often disre-
garded, namely the influence of the vacuum chamber walls and their nature. On the
other hand, the main assumption of our model (constant H. along electron lines)
seems robust in the parametric space considered here.

Collisions with neutrals lower the performance of the MN, in terms of their 7,y
as defined in equation (5.34). This is in spite of the apparent rise of thrust force
that originates in the extraordinary plasma generation that occurs in the plume, for
a fixed value of the electron temperature upstream, 7T,9. This increase is counterbal-
anced by the larger power expenditure incurred into, due to the inelastic collisions
(which can also be interpreted as an increase of the polytropic electron coefficient
with collisions). This trend allows us to conclude that collisions with neutrals (re-
gardless of their origin) are detrimental for MN operation, and this may have an
impact in interpreting existing laboratory experiments, especially when the back-
ground pressure is not sufficiently low to allow neglecting its effects.

The present model offers the possibility of “translating” laboratory MN exper-
iments to in-space conditions, effectively discounting (some of) the facility effects.
This could be accomplished by, first, fitting the model inputs to reproduce the labo-
ratory measurements under a given background pressure, and then, carrying out the
same simulation for an identical plume expanding into vacuum. This promising line

of work is left for future research. Likewise, posing a complete electron model that
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does not solve electron collision effects perturbatively and explores other closure
relations beyond the polytropic assumption (perhaps at the heat flux level) should
be a next step in the modelling of MNs.
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Chapter 6

Conclusions

To conclude this work we gather here the main results of the thesis. A two-
dimensional planar/axisymmetric multi-fluid code, named POSETS, has been devel-
oped for the simulation of the steady state behaviour of the magnetic nozzle in
electron driven Electrodeless Plasma Thrusters. The models included in the POSETS
code are based on the slow dynamics drift-diffusion approximation for the elec-
tron fluid and can be easily extended to include several physical mechanisms that
have been proven to be of importance in the characterization of EPTs. This code
harnesses the capabilities of the FEniCS [(9] library in order to build and solve Dis-
continuous Galerkin (DG) discretizations of the model equations. These methods
have become increasingly popular, particularly in the realm of computational fluid
dynamics (CFD) thanks to the their local conservation properties, their convenience
for the solution of convection-dominated problems, their compact stencil which is
limited to the neighbouring elements and the ease in which hp-adaptivity is per-
formed. Finally, the DG method is able to handle discretizations over unstructured
grids, this property is particularly interesting in the simulation of plasma plumes as
different regions exhibit a wide range of gradients and length scales. The code was
verified against known fluid dynamics and plasma solutions verifying the effect h—

and p— refinement on the error.

Chapter 4 presents the first simulations, to the best of the authors knowledge, of
plasma expansion in a magnetic arch configuration. The results demonstrate that
a free ion beam can be extracted from the source and expanded into a vacuum.
Near the symmetry plane, an oblique shock forms, raising the electric potential and
slowing the ion fluid. Plasma expansion initially resembles that of an axisymmet-
ric nozzle, but the interaction of ion streamlines with the arch’s closed geometry
introduces a paramagnetic drag force in the shock region. Despite this, net posi-
tive thrust is achieved through the interaction of plasma currents with the applied
magnetic field. Incorporating the self-induced magnetic field reveals that a the
plasma-induce magnetic field pushes against the imposed magnetic lines, reducing

drag and enhancing thrust. Magnetic thrust increases steadily even for moderate 3y
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values, highlighting the significant role of the self-induced field in the magnetic arch
configuration compared to its minor effect in axisymmetric nozzles. Ongoing exper-
iments [135] are consistent with these findings, preliminarily providing experimental
validation for the behaviour observed here.

An extension of the code including a neutral fluid, ion and neutral internal energy
and several collisional processes was employed to study the effect of neutral dynamics
and facility effects on the performance and operation of axisymmetric nozzles. This
study is framed in the recent efforts of the space propulsion community to better
characterize the effects of ground testing on the performance of EPTs. It has been
shown in 5 that ion-neutral charge exchange collisions and ionization collisions do
not affect strongly the acceleration of ions in a magnetic nozzle in the simulated
scenarios. In fact, it was shown that the enhanced plasma mass flow provided by
late ionization in the plume slightly increases the thrust produced by the nozzle at
constant T,. However, this effect is accompanied by a strong increase in the power
needed to sustain the discharge with the same electron temperature. This power
has to be supplied to the plume in the form of an increased electron heat-flux at
the source and leads to a marked decrease in MN efficiency along with an increased
effective cooling rate in the electron fluid. These findings align with experimental
evidence, confirming that the performance loss in magnetic nozzles operating in
poor vacuum conditions is primarily caused by electron inelastic collisions, which
enhance the cooling rate of the electron fluid, reducing the amount of thermal energy
available in the plume to be converted into ion kinetic energy, ultimately lowering

overall performance.

Future lines of work

The possible lines of work that open from this thesis have been pointed out in the
are two fold. On the one hand, the models employed in the POSETS solver are all
based on the perfectly magnetised drift-diffusive model of the electrons. This model,
despite its computational advantages is limited to the study of only zeroth-order
finite electron Larmor radius effects, this model also limits the thermodynamics of
electrons to a simple polytropic or isothermal model which, as we have shown, is
a limitation in the case of high background pressures. Therefore, from the point
of view of the models employed here, the most promising extension of the present
work is the improvement of the electron model. The main change in the electron
model should be the inclusion of electron collisionality on the electron momentum
equation as it has been proved here that this effect is of higher relevance than
electron inertia, this could be included in the equations as a generalized Ohm’s law.
This change would lead to a deep change in the electron module of the code but
would be beneficial, particularly in the resolution of the closed line geometry of the
magnetic arch in chapter 4. On the other hand, the inclusion of the electron energy
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equation would allow for a better description of the cooling of the electron fluid due
to collisional processes in poor vacuum conditions and therefore get a self-consistent
picture of the performance loss of the nozzle due to collisions with neutrals. This
extension of the model would imply several changes in the code, specifically the term
involving the divergence of the heat-flux tensor which gives a parabolic character
to that equation would need to be discretized. To that end an a DG method for
the discretization of second order elliptic problems such as the Symmetric Interior
Penalty Galerkin (SIPG) method or the Local DG method (LDG) would need to be

implemented.

From the point of view of the numerical methods employed here, a speed up of
the solver could be obtained by using the so-called Hybridizable DG methods(HDG)
which reduce the number of degrees of freedom in the discretized system while
conserving the beneficial properties of DG methods. Finally, adapting the code to
the latest versions of the FEniCS library, so-called, FEniCSx would be desirable in
order to maintain its future support.

99



Bibliography

1]

[10]

[11]

Stéphane Mazouffre. Electric propulsion for satellites and spacecraft: estab-
lished technologies and novel approaches. Plasma Sources Science and Tech-
nology, 25(3):033002, 2016.

Eduardo Ahedo. Plasmas for space propulsion. Plasma Physics and Controlled
Fusion, 53(12):124037, 2011.

D.M. Goebel and 1. Katz. Fundamentals of Electric Propulsion: lon and Hall
Thrusters. Jet Propulsion Laboratory, Pasadena, CA, 2008.

R.G. Jahn. Physics of Electric Propulsion. Dover, 2006.

Francis M Curran and Thomas W Haag. Extended life and performance test
of a low-power arcjet. Journal of Spacecraft and Rockets, 29(4):444-452, 1992.

P.J. Wilbur. Ion thruster development trends and status in the united states.
Journal Propulsion and Power, 14:708-715, 1998.

K.H. Groh and H.W. Loeb. State of the art of radio-frequency ion sources for
space propulsion). Review of scientific instruments, 65(5):1741-1744, 1994.

D.M. Goebel, R.E. Wirz, and 1. Katz. Analytical ion thruster discharge per-
formance model. Journal of Propulsion and Power, 23(5):1055-1067, 2007.

A.L. Morozov and V.V. Savelyev. Fundamentals of stationary plasma thruster
theory. In Reviews of Plasma Physics, Vol. 21, New York, 2000. Kluwer Aca-
demic.

E. Choueiri. Fundamental difference between the two Hall thruster variants.
Physics of Plasmas, 8(11):5025-5033, 2001.

D. Rafalskyi, J. Martinez-Martinez, L. Habl, E. Zorzoli-Rossi, P. Proynov,
A. Boré, T. Baret, A. Poyet, T. Lafleur, S. Dudin, and A. Aanesland. In-orbit
demonstration of an iodine electric propulsion system. Nature, 599:411-415,
2021.

100



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

23]

JM. Tejeda and A. Knoll. A water vapour fuelled Hall effect thruster: char-
acterization and comparison with oxygen. Acta Astronautica, 211:702-715,
2023.

R.W. Boswell and F.F. Chen. Helicons-the early years. IEEE Transactions
on Plasma Science, 25:1229-1244, 1997.

F.F. Chen and R.W. Boswell. Helicons-the past decade. IFEE Transactions
on Plasma Science, 25:1245-1257, 1997.

J.C. Sercel. Electron-cyclotron-resonance (ECR) plasma acceleration. In
AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1987.

J. Jarrige, P.Q. Elias, F. Cannat, and D. Packan. Characterization of a coaxial
ecr plasma thruster. In 4/th AIAA Plasmadynamics and Lasers Conference,
San Diego, 2013.

SN Bathgate, MMM Bilek, and DR Mckenzie. Electrodeless plasma thrusters
for spacecraft: a review. Plasma Science and Technology, 19(8):083001, 2017.

F.F. Chen. Plasma ionization by helicon waves. Plasma Physics and Controlled
Fusion, 33(4):339, 1991.

J. Freidberg. Plasma Physics and Fusion Energy. Cambridge University Press,
2007.

Eduardo Ahedo and Mario Merino. Two-dimensional supersonic plasma ac-
celeration in a magnetic nozzle. Physics of Plasmas, 17(7):073501, 2010.

Mario Merino and Eduardo Ahedo. Contactless steering of a plasma jet with
a 3D magnetic nozzle. Plasma Sources Science and Technology, 26(9):095001,
2017.

Jaume Navarro-Cavallé, Mick Wijnen, Pablo Fajardo, Eduardo Ahedo,
V. Goémez, A. Giménez, and M. Ruiz. Development and characterization
of the helicon plasma thruster prototype hpt05m. In 36" International Elec-
tric Propulsion Conference, number IEPC-2019-596, Vienna, Austria, 2019.
Electric Rocket Propulsion Society.

F. Trezzolani, M. Manente, E. Toson, A. Selmo, D. Moretto, M. Magarotto,
F. Bos, P. De Carlo, D. Melazzi, and D. Pavarin. Development and testing of

a miniature helicon plasma thruster. In 35th International Electric Propulsion
Conference, Atlanta, GA, IEPC-2017-519, 2017.

M. R. Inchingolo, M. Merino, M. Wijnen, and J. Navarro-Cavallé. Thrust
measurements of a waveguide electron cyclotron resonance thruster. Journal

of Applied Physics, 135(9), 3 2024.

101



[25]

[26]

[27]

[29]

32]

[33]

[34]

K. Takahashi. Thirty percent conversion efficiency from radiofrequency power
to thrust energy in a magnetic nozzle plasma thruster. Scientific Reports,
12:18618, 2022.

Victor Désangles, Denis Packan, Julien Jarrige, Simon Peterschmitt, Patrick
Dietz, Steffen Scharmann, Kristof Holste, and Peter J Klar. Ecra thruster
advances: 30w and 200w prototypes latest performances. Journal of Electric
Propulsion, 2(1):10, 2023.

Filippo Cichocki, Mario Merino, and Eduardo Ahedo. Three-dimensional ge-
omagnetic field effects on a plasma thruster plume expansion. Acta Astronau-
tica, 175:190 — 203, 2020.

Mario Merino, Diego Garcia-Lahuerta, and Eduardo Ahedo. Plasma accelera-
tion in a magnetic arch. Plasma Sources Science and Technology, 32(6):065005,
6 2023.

E. Ahedo, P. Fajardo, M. Merino, J. Navarro-Cavallé, A. Sanchez-Villar,
M. Wijnen, and J. Zhou. Helicon and ecr plasma sources for space propulsion:
simulation and testing. In 2019 International Conference on Electromagnetics
in Advanced Applications (ICEAA), pages 0788-0793, 2019.

Mario Merino. Analysis of magnetic nozzles for space plasma thrusters. PhD
thesis, Universidad Politécnica de Madrid, 2013.

R.R. Hofer, P.Y. Peterson, and A.D. Gallimore. Characterizing vacuum facility
backpressure effects on the performance of a Hall thruster. IEPC Paper, (01-
045), 2001.

A.L. Ortega, I.G. Mikellides, V.H. Chaplin, J.S. Snyder, and G. Lenguito. Fa-
cility pressure effects on a Hall thruster with an external cathode, i: numerical
simulations. Plasma Sources Science and Technology, 29(3), 2020.

Natalie RS Caruso and Mitchell LR Walker. Neutral ingestion effects on plume
properties of a radio-frequency plasma discharge. Journal of Propulsion and
Power, 34(1):58-65, 2018.

A. Fruchtman, G. Makrinich, P. Chabert, and J.M. Rax. Enhanced plasma
transport due to neutral depletion. Physical review letters, 95(11):115002,
2005.

C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation.
Institute of Physics Publishing, Bristol, 1991.

J.A. Bittencourt. Fundamentals of plasma physics. Springer, Berlin, Germany,
2004.

102



[37]

[40]

[41]

[44]

[45]

Mario Merino, Javier Maurinio, and Eduardo Ahedo. Kinetic electron
model for plasma thruster plumes. Plasma Sources Science and Technology,
27(3):035013, 2018.

Gonzalo Sanchez-Arriaga, Jiewei Zhou, E Ahedo, Manuel Martinez-Sanchez,
and Jestis José Ramos. Kinetic features and non-stationary electron trap-

ping in paraxial magnetic nozzles. Plasma Sources Science and Technology,
27(3):035002, 2018.

Bernardo Cockburn and Chi-Wang Shu. The runge-kutta discontinuous
galerkin method for conservation laws v: multidimensional systems. Jour-
nal of Computational Physics, 141(2):199-224, 1998.

Ralf Hartmann and Paul Houston. Adaptive discontinuous galerkin finite
element methods for nonlinear hyperbolic conservation laws. SIAM Journal
on Scientific Computing, 24(3):979-1004, 2003.

Alberto Marin-Cebrian, Enrique Bello-Benitez, Adridan Dominguez-Vazquez,
and Eduardo Ahedo. Macroscopic response of a Hall thruster discharge from an
axial-radial PIC model. In 76" Gaseous Electronics Conference, Ann Arbor,
MI, October 9-13, 2023.

E. Ahedo. Using electron fluid models to analyze plasma thruster discharges.
Journal of Electric Propulsion, 2(1):2, 2023.

G.F. Chew, M.L. Goldberger, and F.E. Low. The Boltzmann equation and
the one-fluid hydromagnetic equations in the absence of particle collisions.
Proceedings of the Royal Society of London A, 236:112-118, 1956.

JM Little and EY Choueiri. Electron cooling in a magnetically expanding
plasma. Physical Review Letters, 117(22):225003, 2016.

Yunchao Zhang, Christine Charles, and Rod Boswell. Thermodynamic study
on plasma expansion along a divergent magnetic field. Physical review letters,
116(2):025001, 2016.

Eduardo Ahedo and Mario Merino. On plasma detachment in propulsive
magnetic nozzles. Physics of Plasmas, 18(5):053504, 2011.

Eduardo Ahedo, Sara Correyero, Jaume Navarro, and Mario Merino. Macro-
scopic and parametric study of a kinetic plasma expansion in a paraxial mag-
netic nozzle. Plasma Sources Science and Technology, 29(4):045017, 2020.

Alfio E Vinci, Marco R Inchingolo, Stéphane Mazouffre, and Jaume Navarro-
Cavallé. Ton dynamics in the magnetic nozzle of a waveguide ecr thruster
via laser-induced fluorescence spectroscopy. Journal of Physics D: Applied
Physics, 56(2):025204, 2022.

103



[49]

[50]

[51]

[59]

[60]

[61]

S Correyero, J Jarrige, D Packan, and E Ahedo. Plasma beam characterization
along the magnetic nozzle of an ECR thruster. Plasma Sources Science and
Technology, 28(9):095004, 2019.

M. R. Inchingolo, M. Merino, and J. Navarro-Cavallé. Plume characterization
of a waveguide ecr thruster. Journal of Applied Physics, 133(11):113304, 2023.

Alfio E Vinci, Stéphane Mazouffre, Victor Gémez, Pablo Fajardo, and Jaume
Navarro-Cavallé. Laser-induced fluorescence spectroscopy on xenon atoms and

ions in the magnetic nozzle of a helicon plasma thruster. Plasma Sources
Science and Technology, 31(9):095007, 2022.

B Wachs and B Jorns. Background pressure effects on ion dynamics in a
low-power magnetic nozzle thruster. Plasma Sources Science and Technology,
29(4):045002, 2020.

Kazunori Takahashi, Yoshinori Takao, and Akira Ando. Performance improve-
ment of a magnetic nozzle plasma thruster. In 36! International Electric
Propulsion Conference, 2019.

R.R. Hofer, P.Y. Peterson, A.D. Gallimore, and R.S. Jankovsky. A high spe-
cific impulse two-stage Hall thruster with plasma lens focusing. In 7th Inter-
national Electric Propulsion Conference, Pasadena, CA, USA, IEPC-01-036,
2001.

Mario Merino and Eduardo Ahedo. Effect of the plasma-induced magnetic field
on a magnetic nozzle. Plasma Sources Science and Technology, 25(4):045012,
2016.

Mario Merino. Motor espacial de plasma sin electrodos con geometria en U,
2019. PCT patent, Spanish Patent Office, Patent no. ES2733773.

I. Bardi, O. Biro, and K. Preis. Perfectly matched layers in static fields. IEEFE
Transactions on Magnetics, 34(5):2433-2436, 1998.

William H Reed and Thomas R Hill. Triangular mesh methods for the neu-
tron transport equation. Technical report, Los Alamos Scientific Lab., N.
Mex.(USA), 1973.

Eleuterio F Toro. Riemann solvers and numerical methods for flurd dynamics:

a practical introduction. Springer Science & Business Media, 2013.
Dietmar Kroner. Numerical schemes for conservation laws. (No Title), 1997.

Vincent Wheatley, Harish Kumar, and Patrick Huguenot. On the role of
riemann solvers in discontinuous galerkin methods for magnetohydrodynamics.
Journal of Computational Physics, 229(3):660-680, 2010.

104



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous
galerkin methods. In 44th AIAA aerospace sciences meeting and exhibit, page
112, 2006.

Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications. Springer Science & Business Media,
2007.

Steffen Petersen, Charbel Farhat, and Radek Tezaur. A space-time discontinu-
ous galerkin method for the solution of the wave equation in the time domain.

International journal for numerical methods in engineering, 78(3):275-295,
20009.

Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially

non-oscillatory shock-capturing schemes. Journal of computational physics,
77(2):439-471, 1988.

Bernardo Cockburn and Chi-Wang Shu. Runge-kutta discontinuous galerkin
methods for convection-dominated problems. Journal of scientific computing,
16:173-261, 2001.

Noel Chalmers and Lilia Krivodonova. A robust cfl condition for the dis-
continuous galerkin method on triangular meshes. Journal of Computational
Physics, 403:109095, 2020.

Hans Petter Langtangen and Kent-Andre Mardal. Introduction to numerical
methods for variational problems, volume 21. Springer Nature, 2019.

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of
differential equations by the finite element method: The FEniCS book, vol-
ume 84. Springer Science & Business Media, 2012.

Daniel Arndt, Wolfgang Bangerth, Maximilian Bergbauer, Marco Feder, Marc
Fehling, Johannes Heinz, Timo Heister, Luca Heltai, Martin Kronbichler,
Matthias Maier, Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David
Wells, and Stefano Zampini. The deal.II library, version 9.5. Journal of
Numerical Mathematics, 31(3):231-246, 2023.

Oliver Sander. DUNE-—The distributed and unified numerics environment,
volume 140. Springer Nature, 2020.

R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny,
V. Dobrev, Y. Dudouit, A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. To-
mov, [. Akkerman, J. Dahm, D. Medina, and S. Zampini. MFEM: A modular
finite element methods library. Computers & Mathematics with Applications,
81:42-74, 2021.

105



73]

[74]

[75]

[76]

[80]

[81]

82]

[83]

[84]

Santiago Badia and Francesc Verdugo. Gridap: An extensible finite element
toolbox in julia. Journal of Open Source Software, 5(52):2520, 2020.

Hendrik Ranocha, Michael Schlottke-Lakemper, Andrew R Winters, Erik Faul-
haber, Jesse Chan, and Gregor J Gassner. Adaptive numerical simulations
with trixi. jl: A case study of julia for scientific computing. arXiv preprint
arXiv:2108.06476, 2021.

Christophe Geuzaine and Jean-Francois Remacle. Gmsh: A 3-D finite element
mesh generator with built-in pre-and post-processing facilities. International
journal for numerical methods in engineering, 79(11):1309-1331, 2009.

Yicheng Pang, Jianjun Ge, Zuozhi Liu, and Min Hu. The riemann problem
for one-dimensional isentropic flow of a mixture of a non-ideal gas with small
solid particles. Results in Physics, 15:102587, 2019.

Esteban Ferrer, Gonzalo Rubio, Gerasimos Ntoukas, Wojciech Laskowski, Os-
car A Marino, Stefano Colombo, Andrés Mateo-Gabin, H Marbona, F' Man-
rique de Lara, David Huergo, et al. : A high-order discontinuous galerkin
solver for flow simulations and multi-physics applications. Computer Physics
Communications, 287:108700, 2023.

K. Takahashi. Helicon—type radiofrequency plasma thrusters and magnetic
plasma nozzles. Reviews of Modern Plasma Physics, 3:3, 2019.

Mario Merino and Eduardo Ahedo. Plasma detachment in a propulsive mag-

netic nozzle via ion demagnetization. Plasma Sources Science and Technology,
23(3):032001, 2014.

Justin M Little and Edgar Y Choueiri. Electron demagnetization in a mag-
netically expanding plasma. Physical review letters, 123(14):145001, 2019.

Mario Merino, Judit Nuez, and Eduardo Ahedo. Fluid-kinetic model of
a propulsive magnetic nozzle.  Plasma Sources Science and Technology,
30(11):115006, 2021.

0O.V. Batishchev. Mini-helicon plasma thruster characterization. In /4th Joint
Propulsion Conference, Hartford, CT, ATAA 2008-5293, 2008.

D. Pavarin, F. Ferri, M. Manente, D. Curreli, Y. Guclu, D. Melazzi, D. Ron-
dini, S. Suman, J. Carlsson, C. Bramanti, E. Ahedo, V. Lancellotti, K. Kat-

sonis, and G. Markelov. Design of 50W helicon plasma thruster. In 31th
International Electric Propulsion Conference, IEPC 2009-205, 2009.

Kazunori Takahashi, Christine Charles, and Rod Boswell. Approaching the
theoretical limit of diamagnetic-induced momentum in a rapidly diverging
magnetic nozzle. Physical review letters, 110(19):195003, 2013.

106



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

93]

[94]

J Navarro-Cavallé, M Wijnen, P Fajardo, and E Ahedo. Experimental char-
acterization of a 1 kW helicon plasma thruster. Vacuum, 149:69-73, 2018.

J.C. Sercel. Electron-cyclotron-resonance (ECR) plasma thruster research. In
24th Joint Propulsion Conference, number 2916, 1988.

T. Vialis, J. Jarrige, A. Aanesland, and D. Packan. Direct thrust measurement
of an electron cyclotron resonance plasma thruster. Journal of Propulsion and
Power, 34(5):1323-1333, 2018.

Sara Correyero, Mario Merino, Paul-Quentin Elias, Julien Jarrige, Denis
Packan, and Eduardo Ahedo. Characterization of diamagnetism inside an
ECR thruster with a diamagnetic loop. Physics of Plasmas, 26(5):053511,
2019.

Antonella Caldarelli, Félicien Filleul, Christine Charles, Rod Boswell, Nicholas
Rattenbury, and John Cater. Radial characterization of an ion beam in a
deflected magnetic nozzle. Journal of Electric Propulsion, 1(1):10, 2022.

Benjamin W. Longmier, Jared P. Squire, Mark D. Carter, Leonard D. Cas-
sady, Tim W. Glover, William J. Chancery, Chris S. Olsen, Andrew V. Ilin,
Greg E. Mccaskill, and Franklin R. Chang Diaz. Ambipolar Ion Accelera-
tion in the Expanding Magnetic Nozzle of the VASIMR ®) VX-200i. In 45th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Ezhibit, number
August, pages 1-10, 20009.

Mario Merino, Diego Garcia-Lahuerta, Célian Boyé, Jaume Navarro-Cavallé,
and Eduardo Ahedo. Preliminary model of the plasma expansion in a magnetic
arch thruster (and overview of the first prototype). In 37" International
Electric Propulsion Conference, number IEPC-2022-423, Boston, MA, June
19-23, 2022. Electric Rocket Propulsion Society.

Mario Merino and Eduardo Ahedo. Influence of electron and ion thermo-
dynamics on the magnetic nozzle plasma expansion. [EEE Transactions on
Plasma Science, 43(1):244-251, 1 2015.

Kazunori Takahashi, Trevor Lafleur, Christine Charles, Peter Alexander, and
Rod W Boswell. Axial force imparted by a current-free magnetically expanding
plasma. Physics of Plasmas, 19(8):083509, 2012.

Justin M Little and Edgar Y Choueiri. Critical condition for plasma confine-
ment in the source of a magnetic nozzle flow. IEEE Transactions on Plasma
Science, 43(1):277-286, 2015.

C.S. Olsen, M.G. Ballenger, M.D. Carter, F.R. Chang Diaz, M. Giambusso,
T.W. Glover, A.V. Ilin, J.P. Squire, B.W. Longmier, E.A. Bering, and P.A.

107



[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

Cloutier. Investigation of plasma detachment from a magnetic nozzle in the
plume of the vx-200 magnetoplasma thruster. Plasma Science, IEEE Trans-
actions on, 43(1):252-268, 2015.

B.R. Roberson, R. Winglee, and J. Prager. Enhanced diamagnetic perturba-
tions and electric currents observed downstream of the high power helicon.
Physics of Plasmas, 18(5):053505, 2011.

Mario Merino Diego Garcia-Lahuerta and Eduardo Ahedo. Effect of collisions
and facility effects on magnetic nozzle operation. Plasma Sources Science and

Technology, (under review).

C. Charles and R. Boswell. Current-free double-layer formation in a high-
density helicon discharge. Applied Physics Letters, 82(9):1356-1358, 2003.

O.V. Batishchev. Minihelicon plasma thruster. IEEFE Transactions on Plasma
Science, 37(8):1563-1571, 20009.

K. Takahashi, T. Lafleur, C. Charles, P. Alexander, R.W. Boswell, M. Perren,
R. Laine, S. Pottinger, V. Lappas, T. Harle, et al. Direct thrust measurement

of a permanent magnet helicon double layer thruster. Applied Physics Letters,
98:141503, 2011.

Federico Boni, Victor Désangles, and Julien Jarrige. Experimental character-
ization of thrust production mechanisms in a magnetic nozzle ecr thruster.
Journal of Electric Propulsion, 1(1):33, 2022.

Alfio E Vinci and Stéphane Mazouffre. Direct experimental comparison of
krypton and xenon discharge properties in the magnetic nozzle of a helicon
plasma source. Physics of Plasma, 28:033504, 2021.

S.A. Andersen, V.O. Jensen, P. Nielsen, and N. D’Angelo. Continuous super-
sonic plasma wind tunnel. Phys. Fluids, 12(3):557-560, 1969.

Anna Sheppard and Justin Little. Performance analysis of an electron cy-
clotron resonance thruster with various propellants. In AIAA Propulsion and
Energy 2021 Forum, page 3375, 2021.

Manuel Martinez-Sanchez, Jaume Navarro-Cavallé, and Eduardo Ahedo. Elec-
tron cooling and finite potential drop in a magnetized plasma expansion.
Physics of Plasmas, 22(5):053501, 2015.

J. C. Porto and P.Q. Elias. Full-pic simulation of an ecr plasma thruster with
magnetic nozzle. In IEPC 2019, 2019.

Shaun Andrews, Simone Di Fede, and Mirko Magarotto. Fully kinetic model
of plasma expansion in a magnetic nozzle. Plasma Sources Science and Tech-
nology, 2022.

108



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

A study of an air-breathing electrodeless plasma thruster discharge. Propulsion
and Power Research, 2024.

Filippo Cichocki, Adrian Dominguez-Vazquez, Mario Merino, and Eduardo
Ahedo. Hybrid 3D model for the interaction of plasma thruster plumes with
nearby objects. Plasma Sources Science and Technology, 26(12):125008, 2017.

J. Zhou, A. Dominguez-Vazquez, P. Fajardo, and E. Ahedo. Magnetized fluid
electron model within a two-dimensional hybrid simulation code for electrode-

less plasma thrusters. Plasma Sources Science and Technology, 31(4):045021,
2022.

A. Sanchez-Villar, J. Zhou, M. Merino, and E. Ahedo. Coupled plasma trans-
port and electromagnetic wave simulation of an ECR thruster. Plasma Sources
Science and Technology, 30(4):045005, 2021.

Thomas A Marks, Ioannis G Mikellides, Alejandro Lopez Ortega, and Ben-
jamin Jorns. Hall2De simulations of a magnetic nozzle. In AIAA Propulsion
and Energy 2020 Forum, ATAA 2020-3642, 2020.

M.R. Nakles and W. A. Hargus. Background pressure effects on ion velocity
distribution within a medium-power Hall thruster. Journal of Propulsion and
Power, 27(4), 2011.

Théo Vialis, Julien Jarrige, and Denis Packan. Geometry optimization and
effect of gas propellant in an electron cyclotron resonance plasma thruster. In
Proc. 35th Int. Electr. Propuls. Conf, pages 1-12, 2017.

Jiewei Zhou, Gonzalo Sanchez-Arriaga, and Eduardo Ahedo. Time-dependent
expansion of a weakly-collisional plasma beam in a paraxial magnetic nozzle.
Plasma Sources Science and Technology, 30(4):045009, 2021.

Raoul Andriulli, Shaun Andrews, Nabil Souhair, Mirko Magarotto, and Fab-
rizio Ponti. Fully kinetic study of facility pressure effects on rf-source magnetic
nozzles. Acta Astronautica, 215:362-372, 2024.

S Baldinucci, Sophia Bergmann, Jack A Hondagneu, Benjamin Wachs, and
Benjamin A Jorns. Impact of facility electrical boundary conditions on the
performance of an electron cyclotron resonance magnetic nozzle thruster. In
37th International Electric Propulsion Conference, IEPC-2022-510, Boston,
MA, June 19-23, 2022.

Sara Correyero Plaza, Julien Jarrige, Denis Packan, and Eduardo
Ahedo Galilea. Measurement of anisotropic plasma properties along the mag-
netic nozzle expansion of an electron cyclotron resonance thruster. In 35
International Electric Propulsion Conference, IEPC-2017-437, Atlanta, GA,
2017. Electric Rocket Propulsion Society.

109



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Kazunori Takahashi, Hikaru Akahoshi, Christine Charles, Rod W Boswell, and
Akira Ando. High temperature electrons exhausted from rf plasma sources
along a magnetic nozzle. Physics of Plasmas, 24(8):084503, 2017.

June Young Kim, Kyoung-Jae Chung, Kazunori Takahashi, Mario Merino, and
Eduardo Ahedo. Kinetic electron cooling in magnetic nozzles: experiments and
modeling. Plasma Sources Science and Technology, 32(7):073001, 2023.

Matteo Guaita, Mario Merino, and Eduardo Ahedo. Hybrid pic-fluid sim-
ulations of the plasma expansion through a magnetic arch. In 38 Inter-
national Electric Propulsion Conference, number TEPC-2024-471, Toulouse,
France, June 23-28, 2024. Electric Rocket Propulsion Society.

Danis Packan, Paul-Quentin Elias, Julien Jarrige, Theo Vialis, Sara Correyero,
Simon Peterschmitt, J.C. Porto-Hernandez, Mario Merino, Alvaro Sénchez-
Villar, Eduardo Ahedo, G. Peyresoubes, A. Thorinius, S. Denis, Kristoff Hol-
ste, Peter Klar, S. Scharmann, J. Zorn, M. Bekemans, T. Scalais, E. Bour-
guignon, S. Zurbach, P. Azais, I. Habbassi, Magali Mares, and Andy Hoque.
H2020 MINOTOR: Magnetic nozzle electron cyclotron resonance thruster. In
36! International Electric Propulsion Conference, number IEPC-2019-875,
Vienna, Austria, 2019. Electric Rocket Propulsion Society.

S Correyero Plaza, Julien Jarrige, Denis Packan, and Eduardo Ahedo. Ion
acceleration in the magnetic nozzle of an ecr thruster: Comparison of exper-
imental measurements with a quasi 1d kinetic model. In Space Propulsion
2018, 2018.

TA Collard and BA Jorns. Magnetic nozzle efficiency in a low power inductive
plasma source. Plasma Sources Science and Technology, 28(10):105019, 2019.

C. Charles. High density conics in a magnetically expanding helicon plasma.
Applied Physics Letters, 96(5):051502-051502, 2010.

S. K. Saha, S. Raychaudhuri, S. Chowdhury, M. S. Janaki, and A. K. Hui.
Two-dimensional double layer in plasma in a diverging magnetic field. Physics
of Plasmas, 19(9):092502, 2012.

Eduardo Ahedo and Mario Merino. Two-dimensional plasma expansion in
a magnetic nozzle: separation due to electron inertia. Physics of Plasmas,
19(8):083501, 2012.

J.J. Ramos. General expression of the gyroviscous force. Physics of Plasmas,
12(11):112301, 2005.

John S Snyder, Giiovanni Lenguito, Jason D Frieman, Thomas W Haag, and
Jonathan A Mackey. The effects of background pressure on spt-140 thruster

110



[130]

[131]

[132]

133

[134]

[135]

performance at multiple power levels. In AIAA/SAE/ASEE Joint Propulsion
Conference, number GRC-E-DAA-TN57023, 2018.

K. Takahashi and T. Fujiwara. Observation of weakly and strongly diverg-
ing ion beams in a magnetically expanding plasma. Applied Physics Letters,
94:061502, 2009.

C. Charles and R. Boswell. Laboratory evidence of a supersonic ion beam gen-
erated by a current-free ’helicon’ double-layer. Physics of Plasmas, 11:1706—
1714, 2004.

E. Ahedo, P. Martinez-Cerezo, and M. Martinez-Sanchez. One-dimensional
model of the plasma flow in a Hall thruster. Physics of Plasmas, 8:3058-3068,
2001.

E. Bello-Benitez and E. Ahedo. Axial-azimuthal, high-frequency modes from
global linear-stability model of a Hall thruster. Plasma Sources Science and
Technology, 30(3):035003, 3 2021.

Davide Poli, Enrique Bello-Benitez, Pablo Fajardo, and Eduardo Ahedo.
Time-dependent axial fluid model of the hall thruster discharge and its plume.
Journal of Physics D: Applied Physics, 2023.

Célian Boyé, Jaume Navarro-Cavallé, and Mario Merino. Magnetic arch
plasma expansion in a cluster of two ecr plasma sources. Journal of Elec-
tric Propulsion, (accepted).

111



	Introduction
	Electric Propulsion
	Electrodeless Plasma Thrusters
	Plasma Simulations
	Thesis objectives
	Thesis Outline


	Fluid Models for Magnetised Plasma Expansions
	Fluid Theory of Plasmas
	Two Dimensional Models
	Electron Model
	Collisional corrections to electron momentum equation

	Ion Model
	Neutral Model
	Self Induced magnetic field

	POSETS: Plume SOlver for Electrodeless Thruster Systems
	Design goals and capabilities
	Numerical Integration
	The DGFEM weak form
	Discretization of the parabolic terms in the energy equation
	Choice of Finite Element Family
	Temporal Evolution
	Shock-Capturing
	Finite Element Weak Form of Elliptic Problems

	Numerical Implementation
	Finite Element Libraries
	Code Structure

	Verification Tests
	Sod's shock tube problem:
	Prandtl-Meyer Expansion:
	Planar Plasma Column:
	Dimagno Verification Tests
	Magnetic Field Solver
	Convergence of the discretization of the energy equation 


	Plasma Expansion in a Magnetic Arch
	Introduction
	Model
	Numerical integration

	Simulation results
	Plasma expansion in the β0 = 0 limit
	Effect of the plasma-induced magnetic field

	Discussion
	Summary

	Neutral Dynamics and Facility Effects in Magnetic Nozzles
	Introduction
	Three-fluid Model
	Ions and neutrals
	Electrons
	Numerical Integration

	Results
	Simulation cases
	Response of highly magnetized electrons
	Ion and neutral response
	Role of collisions on the electron fluid
	Effect of collisions on the electron power balance
	Propulsive performance
	Ion distribution Functions

	Collision models
	Full model equations
	Cell size, order and domain convergence
	Summary

	Conclusions

