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Abstract

The aviation sector contributes to climate change directly through the emission of carbon
dioxide (CO2), water vapor, sulfur dioxide, and soot, and indirectly through the formation of
contrail cirrus and chemically induced changes in ozone, methane, and stratospheric water
vapor resulting from nitrogen oxide emissions. Collectively, these effects are estimated to
account for approximately 3–5% of total anthropogenic radiative forcing, placing increasing
pressure on the aviation industry to mitigate its environmental footprint. Notably, non-CO2
effects, responsible for nearly two-thirds of aviation’s net effective radiative forcing, albeit
with considerable uncertainty, are highly sensitive to the time and location of the emissions.
Consequently, operational measures such as climate-aware flight planning, aimed at avoid-
ing regions with strong warming effects or intentionally flying through areas associated with
cooling impacts, offer a practical and infrastructure-compatible solution to mitigate avia-
tion’s climate impact in the short term.

In recent years, there has been a growing interest in exploring the potential of flight plan-
ning to mitigate the climate impact of aviation. While these studies demonstrate promising
reductions in climate effects, they have limited their focus to individual trajectory optimiza-
tion, overlooking the interactions between flights and the resulting implications on the air
traffic management (ATM) system. Indeed, optimizing individual flight trajectories to ac-
count for climate-sensitive areas results in a redistribution of traffic, diverting flows away
from regions associated with warming effects and increasing congestion in areas character-
ized by cooling effects. Such redistribution can compromise air traffic safety and manage-
ability, particularly by introducing imbalances between sector capacity and traffic demand
and increasing traffic complexity in specific regions, thereby raising concerns about the fea-
sibility of climate-aware flight planning from the perspective of the ATM system. The cur-
rent state of the literature lacks a framework for evaluating the climate benefits achievable
through flight planning, one that extends beyond purely climate considerations to also ac-
count for the operational constraints and challenges associated with implementing such a
measure in practice.

This thesis aims to fill this gap by developing frameworks that integrate air traffic man-
ageability considerations into climate-optimal flight planning. To this end, we first introduce
a sequential optimization framework. Within this strategy, individual flight plans are ini-
tially optimized considering climate impact and operational costs. Subsequently, these flight
plans are integrated into the network traffic, and their collective impact on the manageabil-
ity of air traffic is evaluated. Finally, resolution strategies are proposed to compensate for
any adverse effects these trajectories may impose on the ATM system performance. Within
this framework, several distinct approaches are presented, each characterized by its specific
resolution strategy, performance indicators, and routing flexibility.

The initial implementation of the sequential approach is conducted in fully free-routing
airspace. Individual flight plans are laterally optimized to mitigate climate impact, and the
resulting potential conflicts associated with the adoption of these optimized trajectories are
then evaluated. A centralized conflict resolution strategy based on the simulated annealing
algorithm is proposed, employing speed adjustments to mitigate conflict probability while
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preserving climate optimality. The developed strategy is evaluated through a regional case
study over the Spanish airspace.

To overcome the scalability and adaptability limitations of the centralized heuristic ap-
proach, a distributed resolution strategy is subsequently proposed using a multi-agent re-
inforcement learning (MARL) framework. The proposed strategy leverages the twin de-
layed deep deterministic policy gradient algorithm to adjust aircraft speed during the flight
planning phase to resolve the potential conflicts associated with climate-optimal trajectories.
Given its scalability, the framework is benchmarked across the entire European airspace,
considering three-dimensional optimized flight plans.

Building on the MARL framework, the study further incorporates traffic complexity as a
more comprehensive and robust measure of air traffic manageability during the flight plan-
ning phase. It extends the analysis to realistic conditions within the currently structured
airspace. To mitigate the traffic complexity of three-dimensional climate-optimized flight
plans, a distributed MARL approach is proposed, modeling the problem as a partially ob-
servable Markov decision process and employing shared policy parameters to enhance scal-
ability. The proximal policy optimization algorithm is used with decision variables extended
to include both vertical maneuvers and speed adjustments.

Finally, to further enhance computational efficiency and enable large-scale analyses that
support policy development, an integrated optimization framework is introduced. Unlike
the sequential approach, the integrated framework simultaneously mitigates climate impact
and traffic complexity in a single step. Climate hotspots are treated as constraints to be
avoided, whereas traffic complexity is formulated as the objective function to be minimized.
The problem is formulated as a constrained Markov decision process and solved using an
adapted version of proximal policy optimization, incorporating Lagrangian techniques to
enforce climate-related constraints. The decision space is further extended to allow lateral,
vertical, and speed modifications.

The analyses conducted in this thesis using real traffic scenarios indicate that the climate
benefits reported from individual flight planning may not be fully realizable in practice, pri-
marily due to their adverse impact on the ATM system performance, particularly in terms
of increased conflicts and traffic complexity. Through the implementation of the developed
network-scale flight planning methodologies, we demonstrate that by accepting a modest
reduction in the potential climate benefit achieved via individual flight planning, it is possi-
ble to maintain, and in some cases even improve, operational manageability at levels com-
parable to those of standard business-as-usual flight plans, albeit with a slight increase in
the operational cost. Therefore, the proposed methodologies provide a practical means of
balancing environmental, operational, and cost-efficiency objectives.

Overall, the work presented in this thesis represents an important advancement toward
a more reliable evaluation of aviation’s climate impact mitigation potential through flight
planning and contributes to the development of practical and scalable frameworks support-
ing the future implementation of climate-optimal aircraft trajectories.
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Chapter 1

Introduction

1.1 Motivation

The imperative to address climate change has reached a critical juncture, highlighted by the
global target established in the Paris Agreement to limit the Earth’s temperature increase to
2°C above pre-industrial levels, widely regarded as the upper and potentially irreversible
threshold, while striving to remain below 1.5°C [1]. However, this more stringent target
has already been breached. The year 2024 witnessed unprecedented global temperatures,
continuing the record-breaking trend of 2023. For the first time, the annual global average
temperature clearly exceeded 1.5°C above pre-industrial levels (see Figure 1.1). Multiple
global records were shattered, including those for greenhouse gas concentrations, air tem-
perature, and sea surface temperature, fueling extreme events such as floods, heatwaves,
and wildfires, which are exacerbating risks to ecosystems, infrastructure, and human health.
These data underscore the accelerating consequences of human-induced climate change and
reinforce the urgent need for decisive action across all sectors. Without immediate and sus-
tained mitigation efforts, the frequency and severity of these climate-related disasters will
continue to rise, further threatening the stability of societies, economies, and natural sys-
tems worldwide.

The aviation industry has grown substantially over recent decades, becoming a key
driver of global transportation and economic development [2]. However, this expansion
has raised environmental concerns, particularly regarding aviation’s contribution to climate
change, which accounts for approximately 4% of total anthropogenic climate forcing since
pre-industrial times [3]. This climate impact results not only from the direct emissions of
carbon dioxide (CO2), the most well-known and long-lived greenhouse gas, but also from
a range of non-CO2 effects. These include emissions of sulfur dioxide (SO2) and water va-
por (H2O), as well as indirect effects such as the formation of contrail cirrus and chemically
induced changes in atmospheric concentrations of ozone (O3), methane (CH4), and strato-
spheric water vapor due to nitrogen oxides (NOx) emissions [4]. According to the latest
estimates, these non-CO2 effects contribute approximately twice the climate forcing of CO2

emissions from aviation, although this estimate is subject to considerable uncertainty [3].



2 Chapter 1. Introduction

FIGURE 1.1: Global surface temperature trends and anomalies. Top-left panel: Annual global surface
temperature increases relative to pre-industrial levels (1850–1900) since 1967, highlighting the recent
breach of the critical 1.5°C threshold. Top-right panel: Five-year averaged temperature changes from
1850 to 2024, illustrating the accelerating warming trend. Bottom panel: Global map showing surface
air temperature anomalies for 2024 relative to the reference period 1991–2020, indicating widespread

warming with regional variations. Credit: C3S/ECMWF.

Emissions of both CO2 and non-CO2 pollutants change the Earth’s radiation balance by
altering the equilibrium between incoming solar energy and outgoing thermal radiation,
quantified as radiative forcing (RF) [5]. For example, contrail cirrus clouds, as the most
prominent non-CO2 forcing agent and the primary contributor to net climate effects [3], trap
outgoing thermal radiation and also reflect a portion of incoming solar radiation (during
daylight hours). This radiative imbalance can push the climate system toward a new equilib-
rium state characterized by changes in temperature (and also precipitation and sea level). In
the context of aviation, the net RF is positive, thereby contributing to global warming [3, 4].
In order to meet the set climate goals such as International Civil Aviation Organization’s
(ICAO) aspiration for net-zero carbon emissions by 2050 [6], along with the Paris Agree-
ment’s target to limit global warming to below 1.5°C [1], the aviation sector faces growing
pressure to reduce its climate footprint [7, 8].

Multiple mitigation measures, ranging from policy-based and technological solutions
to alternative fuels and operational improvements, are currently under consideration or
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planned for implementation to address aviation’s climate impact. Solutions such as sustain-
able aviation fuels (SAFs), electric aircraft, and hydrogen propulsion are among the most
promising pathways to reduce both CO2 and non-CO2 effects [9]. However, these miti-
gation measures face several challenges that delay their widespread deployment. Electric
aircraft are constrained by battery energy density, which limits range and payload, while
fast turnarounds require high-power charging and clean-energy (i.e., low-carbon) infrastruc-
ture; hybrid propulsion mitigates energy demands but adds complexity, weight, and certi-
fication hurdles [10, 11]. Hydrogen propulsion, while offering zero CO2 emissions, poses
challenges related to green hydrogen production, cryogenic storage, and new infrastructure
needs, along with concerns over increased contrail formation due to higher water vapor
emissions [12, 13]. SAFs, although they can be compatible with current engines, are con-
strained by limited feedstock availability, high production costs, and the need for support-
ive policies to scale up supply chains [12,14,15]. All in all, new technologies and alternative
fuels will require extended periods of research, development, certification, and gradual fleet
replacement before full integration into the aviation sector [16, 17]. Thus, while these strate-
gies offer substantial long-term potential, near-term complementary measures are needed to
bridge the interim period.

Optimizing flight trajectories has emerged as a promising short-to-medium-term strat-
egy to address non-CO2 climate impacts [18]. CO2 remains in the atmosphere for centuries
and is well-mixed globally, meaning its radiative forcing largely depends on the cumula-
tive mass released into the atmosphere over time [3]. In contrast, non-CO2 species, such
as nitrogen oxide-induced effects and contrail-cirrus, have significantly shorter atmospheric
lifetimes and exhibit regionally and temporally variable effects. For example, the formation
of persistent contrails can influence the climate within hours by altering high-altitude cloud
coverage, while NOx emissions modify atmospheric chemistry, affecting ozone and methane
concentrations over months to years. As a result, the radiative forcing from non-CO2 ef-
fects is highly sensitive to the time and location of emissions [19]. Consequently, rerouting
aircraft to avoid regions where emissions exert large climate effects offers a practical and
infrastructure-compatible approach to reducing aviation’s climate footprint [20, 21].

In recent years, there has been growing interest in exploring the potential of flight plan-
ning to mitigate the climate impact of aviation (refer to [18] for a review of these studies).
However, the existing literature has focused on assessing these opportunities through micro-
scale flight planning, where flights are optimized individually and independently. This
raises a natural question regarding the practicality of this measure and, consequently, the
extent to which the anticipated climate mitigation benefits can be realized when applied to
large-scale, real-world air traffic scenarios.

When aircraft trajectories are optimized for climate benefits, they are typically rerouted
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FIGURE 1.2: Rerouting aircraft to avoid regions where emissions have a strong warming effect can
reduce the overall climate impact, though it often increases operational costs due to deviations from
cost-optimal routes. Furthermore, extending this strategy from individual flights to multiple flights
(as shown in the right panel) may result in localized congestion and operational challenges, thereby

raising concerns about its operational feasibility.

to avoid airspace regions associated with warming effects (see Figure 1.2) and, when in-
tended, planned to fly through areas favorable to cooling contrail formation. This climate-
aware routing strategy can lead to a considerable shift in traffic distribution. Specifically,
sectors associated with warming impacts tend to experience reduced traffic, while adjacent
sectors or those linked to cooling effects may see increased congestion. Such redistribu-
tion can compromise the manageability of air traffic, particularly in high-density regions.
This deterioration in manageability can be quantified using several indicators, such as traffic
complexity (i.e., the level of difficulty in managing traffic), air traffic controller (ATC) work-
load, the balance between capacity and demand, and conflict likelihood (i.e., potential loss
of separation). As manageability declines, the system’s ability to maintain safe and efficient
operational performance degrades, increasing the likelihood of safety-critical events.

Considering the projected growth of the aviation sector, any degradation in air traf-
fic manageability resulting from the implementation of climate-optimal trajectories may be
deemed unacceptable from the operational perspective. Therefore, ensuring the practicality
of climatically optimized flight plans is paramount. Moreover, significant increases in fuel
consumption, flight time, or associated operating costs resulting from deviations from stan-
dard routes can undermine stakeholder support for climate mitigation strategies. Therefore,
a truly sustainable solution for aviation must simultaneously address climate impact miti-
gation, traffic manageability, and operational cost-effectiveness, as the intersection of these
three factors is essential for incentivizing stakeholders to advance toward more climate-
friendly operations (see Figure 1.3).
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FIGURE 1.3: Key objectives in climate-aware trajectory planning. The intersection of climate miti-
gation, traffic manageability, and operational cost defines the solution space targeted in this thesis,

illustrated by the shaded area.

This thesis is motivated by the need for a more realistic insight into the climate benefits
achievable through flight planning, one that extends beyond purely climate considerations
to also account for the operational constraints and challenges associated with implementing
such a measure in practice. To this end, we first examine the operational implications of
incorporating climate impact considerations into flight planning at the network scale and
subsequently propose frameworks that enable the planning of climate-optimized flight tra-
jectories while maintaining operational manageability when compared to business-as-usual
operations.

1.2 Research gaps

A comprehensive review of the state of the art in climate-optimal flight planning, presented
in Chapter 2, reveals that previous studies have primarily focused on optimizing individ-
ual trajectories [18, 22]. While these studies provide valuable insights into the potential of
flight planning to mitigate aviation climate impact, they fall short of addressing the broader
challenges associated with large-scale implementation in real-world air traffic operations.
Given the vast number of aircraft operating in the airspace, averaging approximately 29,000
to 35,000 flights per day over Europe, depending on seasonal variations [23], analyzing iso-
lated trajectories is insufficient to evaluate the mitigation potential achievable through the
flight planning strategy. Therefore, it is essential to conduct analyses at the network scale
that account for the collective behavior of all flights within the system, and to ensure that
climate-optimal trajectories remain operationally feasible in practice without compromising
air traffic manageability.

To the best of our knowledge, as of the beginning of this research in March 2022, no stud-
ies had addressed this challenge by developing climate-aware flight planning frameworks
that explicitly consider the operational manageability of the traffic. Interest in this area, how-
ever, has grown in recent years. Concurrent with the work presented in this thesis, several
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authors have published studies on related topics [24–26], which are reviewed in detail in
Chapter 2. In the following section, we outline specific research gaps that emerge from this
broader open problem.

Evaluating the operational manageability of climate-optimal trajectories at the
network scale

Considering flight planning as one of the most immediately deployable measures for mit-
igating aviation-induced climate effects necessitates, first and foremost, a comprehensive
evaluation of the impacts that implementing climate-aware trajectories may have on ATM
system performance. While such routing strategies promise environmental benefits, their
large-scale adoption may adversely affect air traffic manageability. Therefore, assessing their
real-world viability must go beyond micro-scale trajectory planning and include a quantifi-
able analysis of their impact on ATM system performance through relevant indicators, such
as air traffic complexity, conflict risk, capacity and demand, and system-wide resilience, to
determine the extent to which these climate-optimized flight plans are operationally man-
ageable. Despite the importance of this evaluation, at the outset of this PhD, no studies had
evaluated the operational effects of climate-oriented routing strategies at the network scale,
thus identified as an open problem.

Mitigating operational implications arising from the adoption of climate-optimal
trajectories

Following the evaluation of the network-level impacts of independently optimized trajecto-
ries, it becomes necessary to mitigate any adverse effects these trajectories may impose on
the ATM system performance. To deem such trajectories operationally feasible, their man-
ageability must be at least preserved at levels comparable to those of business-as-usual oper-
ations. This necessitates adjustments to the initially optimized flight plans whenever detri-
mental consequences, such as increased traffic complexity, elevated conflict risk, or capacity-
demand imbalances, are identified. In ATM studies, this strategy is commonly referred to as
a resolution problem.

Addressing this problem is inherently complex due to its high dimensionality, the large
number of aircraft involved, and the nonlinear nature of their dynamics [27]. Furthermore,
the inclusion of operational objectives (e.g., conflict resolution, traffic complexity mitigation)
introduces interdependencies among flights, reflecting the multi-agent structure of the ATM
system. These inter-agent couplings transform the problem into a large-scale, interconnected
optimization, where no single flight can be optimized in isolation. To address this problem,
a sophisticated framework is needed that can handle high-dimensional, multi-agent interac-
tions and ensure the manageability of air traffic in realistic, large-scale scenarios. Yet, such
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a resolution framework is currently absent from the literature, highlighting an open gap in
existing research.

Developing a scalable framework to support large-scale study of climate-optimal
flight planning toward guiding policy actions

To incentivize stakeholders and policymakers to take the necessary steps toward implement-
ing climate-optimized flight planning, a systematic evaluation of both its climate benefits
and its operational feasibility is required. Such insight can only be gained through large-
scale analysis under real traffic scenarios. Large-scale scenarios refer to analyses conducted
over a wide range of weather patterns (e.g., an entire year) to capture the strong dependence
of non-CO2 climate effects on meteorological variables across different potential weather
conditions, which can largely affect both the achievable climate benefits and the resulting
traffic distribution.

Addressing this need requires a scalable framework to enable more realistic and opera-
tionally informed analysis of climate-optimized flight planning. The approach discussed in
Scientific Gap 2 addresses this problem by sequentially optimizing individual trajectories,
assessing their manageability, and applying adjustments to restore stability in the ATM sys-
tem. While conceptually effective and suitable for planning daily operations, this multi-step
approach may not be computationally efficient for large-scale analysis (e.g., year-long flight
planning scenarios). In particular, the need to repeatedly perform micro-scale optimizations,
followed by ATM performance evaluation and trajectory adjustment, results in consider-
able computational and data-handling burdens. To overcome these limitations, a unified,
fast-time framework is required, one that can simultaneously generate operationally man-
ageable climate-optimized trajectories in a single step. Such a framework would eliminate
the inefficiencies of the sequential pipeline and enable real-time or near-real-time analysis of
large-scale traffic scenarios. Despite its importance, no such integrated approach currently
exists. Bridging this gap is essential to support large-scale analyses required for developing
currently missing incentivizing indicators toward policy actions.

1.3 Objectives

Building on the identified scientific gaps, the main objective of this thesis is to propose frame-
works for network-level climate-optimized flight planning that explicitly account for air traf-
fic manageability. To achieve this, the research pursues the following specific objectives:

• Goal 1: Quantify the operational implications of adopting individually optimized
climate-aware trajectories on air traffic manageability by evaluating key performance
metrics, including air traffic complexity and potential conflicts.
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• Goal 2: Develop resolution strategies to restore air traffic manageability in scenarios
where climate-optimized trajectories compromise it, thus ensuring operational feasi-
bility while preserving climate benefits.

• Goal 3: Develop an integrated and scalable framework that jointly addresses climate
objectives and operational manageability, enabling fast-time, large-scale flight plan-
ning to generate realistic, policy-relevant insights into the climate mitigation potential
of climate-aware operations.

This set of research goals follows a logical progression from micro-scale analysis to ATM
system-wide application. First, the thesis aims to examine how individually optimized tra-
jectories affect the performance of the ATM system, establishing the need for more holistic
evaluation beyond climate goals alone. Second, to address any operational issues that arise,
we propose resolution frameworks capable of adjusting these flight plans while preserv-
ing their environmental benefits. Finally, we move toward developing an integrated and
scalable optimization framework that jointly considers environmental and operational ob-
jectives, suitable for large-scale, policy-relevant applications. This layered approach reflects
the incremental research required to bridge the gap between micro-scale flight planning and
its practical implementation in the real-world ATM system.

1.4 Contributions

In line with the defined objectives, this thesis makes several contributions to the field of
climate-aware flight planning. These contributions address the aforementioned research
gaps, including the lack of network-level evaluation of climate-optimized trajectories, the
absence of resolution strategies to ensure operational manageability, and the need for scal-
able frameworks capable of supporting large-scale analysis. The main contributions are,
therefore, as follows:

1. Quantifying the impact of climate-optimized trajectories on air traffic manageability
(Goal 1)

This thesis investigates how adopting individually optimized climate-aware trajecto-
ries influences the manageability of air traffic. Manageability is analyzed through a
set of ATM-relevant performance indicators, including conflict count and complex-
ity score. The analyses encompass a range of scenarios, including different airspace
structures (free-routing and structured), spatial domains, and levels of flight planning
flexibility (lateral only (2D) and full trajectories (3D)). This evaluation provides insight
into how (micro-scale) climate-optimized flight planning may affect air traffic manage-
ability and highlights the potential operational challenges that could arise when such
trajectories are implemented across real traffic scenarios.
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The findings related to this contribution have been documented in several publica-
tions. Analyses of potential conflicts and traffic complexity in structured airspace were
presented in [28]. Evaluations of conflicts under free-routing conditions were pub-
lished in [29] and [30] for 2D and 3D optimized trajectories, respectively.

2. Development of a conflict resolution strategy based on a heuristic approach (Goal 2)

To address the operational challenges posed by adopting individually optimized tra-
jectories in a climate-friendly manner, as the first attempt, this thesis introduces a
heuristic conflict resolution strategy. The proposed algorithm aims to reduce the num-
ber of potential conflicts while preserving the environmental benefits of the optimized
trajectories. This method is applied and evaluated in a case study over Spanish airspace
(see the related publication in [29]).

3. Development of a distributed multi-agent reinforcement learning framework for
large-scale conflict resolution (Goal 2)

To overcome the scalability limitations of heuristic-based approaches, this thesis pro-
poses a novel cooperative framework based on multi-agent deep reinforcement learn-
ing (MARL) to resolve conflicts arising from the adoption of climate-optimal trajecto-
ries during the flight planning phase. This contribution was published in [30]. The
proposed strategy, referred to as the policy-sharing multi-agent twin-delayed deep
deterministic policy gradient (Ps-MATD3) algorithm, is designed to handle the high-
dimensional, continuous action space characteristic of fully free-routing airspace. The
framework follows a centralized training and decentralized execution scheme. In this
setup, the policy is trained in a centralized manner, but during execution, each aircraft
applies the policy independently. To ensure scalability in large-scale scenarios involv-
ing varying numbers of agents, shared policy parameters are implemented, providing
flexibility to accommodate diverse air traffic conditions and ensuring the framework
can adapt to dynamic operational environments. Such computational enhancements
allow the case study to be extended to European airspace.

4. Development of multi-agent reinforcement learning framework for complexity man-
agement (Goal 2)

Extending the previous contributions focused on optimizing flights in free-routing
airspace and on conflict resolution, this contribution further enhances the realism and
applicability of the proposed developments by extending the analysis to structured
airspace and incorporating air traffic complexity as a more suitable indicator of traffic
manageability during the flight planning phase. To address the increased complexity
resulting from the adoption of individually optimized trajectories, we propose a co-
operative framework based on multi-agent proximal policy optimization (MAPPO),
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well-suited for discrete action spaces in structured airspace. This approach derives an
optimal policy that provides aircraft-specific altitude and speed modifications to miti-
gate air traffic complexity. Similar to the Ps-MATD3 algorithm, this approach follows
the centralized training and decentralized execution paradigm and leverages parame-
ter sharing to ensure generalizability and scalability to diverse air traffic scenarios. The
performance of the developed methodology is evaluated using a real case study in Eu-
ropean airspace within the structured airspace. This contribution was documented in
a submitted manuscript currently under revision [31].

5. Development of a scalable single-step framework for network-scale climate-optimized
flight planning using constrained multi-agent reinforcement learning (Goal 3)

Contributions 2, 3, and 4 adopt a multi-step approach for network-level climate-optimal
routing: first performing micro-scale trajectory optimization, then integrating those
trajectories into the network traffic, and finally resolving any adverse effects that may
arise from their adoption. Although the developed MARL-based conflict-resolution
and complexity-management algorithm scales well, the prerequisite of micro-scale
flight planning imposes computational constraints for large-scale studies required to
develop policy-relevant indicators for stakeholders. The final contribution of this the-
sis is, therefore, to introduce a fast-time, scalable framework built on constrained multi-
agent reinforcement learning, which enables single-step network-level flight planning
by treating climate-sensitive area avoidance as constraints to be satisfied, and opera-
tional manageability as an objective to be optimized. The proposed method employs
the MAPPO algorithm and adapts it to handle constraints related to climate hotspot
avoidance using the Lagrangian technique. The framework enables direct optimiza-
tion over business-as-usual trajectories to avoid climate-sensitive regions while mit-
igating air traffic complexity. By eliminating the need for individual trajectory op-
timization, the framework significantly reduces computational burden and enables
large-scale analyses. The preliminary development of this approach was presented
at the SESAR Innovation Days conference [32], and a journal article is currently under
preparation.

1.5 Outline of the Thesis

This thesis is structured as follows:

• Chapter 1, the current chapter, presents the motivation for this research, outlines the
identified research gaps, and defines the main objectives and contributions of the the-
sis.
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FIGURE 1.4: Structure of the chapters in this dissertation and their correlation with research contri-
butions.

• Chapter 2 reviews the state-of-the-art in climate-optimized trajectory planning, high-
lights current limitations, and frames the specific open problems that this thesis aims
to address.

• Chapter 3 investigates climate-aware flight planning within a free-routing airspace
context. We utilize the number of conflicts as an indicator of traffic manageability
and propose a heuristic-based resolution strategy to address conflicts arising from the
adoption of independently optimized trajectories.

• Chapter 4 enhances the framework from Chapter 3 by introducing a distributed MARL-
based approach for conflict resolution. This method is designed to improve scalabil-
ity and performance in high-density traffic scenarios, overcoming the limitations of
heuristic-based strategies.

• Chapter 5 extends the analysis to structured airspace and considers air traffic complex-
ity as the performance indicator. To mitigate the potential complexity increase result-
ing from the adoption of climate-optimal trajectories, a scalable resolution framework
based on MARL is proposed.
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• Chapter 6 introduces an integrated framework for climate-optimized flight planning
at the network level. This framework enables large-scale scenario analysis without the
need for individual trajectory optimization.

• Chapter 7 summarizes the key findings of the thesis, discusses their broader implica-
tions, and outlines potential directions for future research.
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Chapter 2

State of the art

The problem of climate-optimized flight planning at the network scale involves several com-
ponents: models predicting the spatiotemporal climate sensitivity to aircraft emissions, the
problem formulation and solution approaches for micro-scale trajectory optimization, per-
formance indicators for evaluating operational manageability, and resolution strategies to
address the operational challenges introduced by climate-optimized trajectories. This chap-
ter provides an overview of these components and reviews the most recent studies in each
area, ultimately identifying the existing gaps that this thesis aims to address.

2.1 Climate optimal flight planning

Flight planning is a fundamental operational process in aviation that defines an aircraft’s
intended trajectory, including its lateral path, altitude profile, and speed schedule. Con-
ventionally, flight trajectories are planned mainly to minimize operational costs (e.g., con-
sidering fuel consumption and/or flight time) while satisfying safety constraints, airspace
structure, airline preferences, and air traffic control requirements. However, in response
to growing concerns about global warming, the aviation sector’s contribution to climate
change, and the projected increase in air traffic demand, there is a pressing need to incorpo-
rate environmental considerations, particularly climate impact, into flight planning [3].

While CO2 emissions have long been recognized as the primary contributor to aviation-
induced climate change, they represent only a fraction of the sector’s total climate impact.
According to a recent estimate by Lee et al. [3], non-CO2 effects, primarily contrail cirrus and
NOx-induced ozone formation, account for approximately two-thirds of aviation’s net effec-
tive radiative forcing. Unlike CO2, which has a long-term warming effect, non-CO2 impacts
are highly sensitive to the atmospheric conditions at the time and location of emissions. Con-
sequently, rerouting flights to avoid areas where emissions lead to high climate impact, often
referred to as climate-sensitive regions, climate hotspots, or ECHO areas, offers a practical
and infrastructure-compatible approach to climate impact mitigation [20, 21].
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2.1.1 Climate impact estimation models

Mitigating the climate impacts of non-CO2 forcing agents through flight planning requires,
as a first step, accurate information on the location and intensity of climate sensitive areas.
However, not all climate impact modeling approaches used in the literature for flight plan-
ning provide information on the spatiotemporal dependency of non-CO2 climate effects,
which is necessary to achieve the full potential of climate-optimized flight planning.

In early efforts to mitigate the climate effects of aviation through flight planning, re-
searchers explored a range of strategies, including reducing emissions [33], avoiding per-
sistent contrail formation areas [34, 35], reducing radiative forcing (RF) [36], and reducing
global warming potential (GWP) [37, 38]. For the climate effects of different species, ex-
cept for contrails, the typical approach involves first estimating emissions, commonly using
methods such as the Boeing fuel flow method 2 (BFFM2), to compute emission indices for
the most relevant species, particularly NOx [39,40]. These indices, along with fuel consump-
tion, are then used to calculate the corresponding RF, from which different climate metrics
(e.g., GWP) are calculated. Each of these steps, such as emissions estimation, RF calculation,
and climate metric evaluation, was incorporated in early studies to represent climate effects
in the objective function of the flight planning problem.

For contrail formation, which cannot be simply attributed to a single emission quan-
tity, assessments have typically been based on the distance traveled through regions con-
ducive to the formation of persistent contrails. Therefore, instead of emissions, persistent
contrail-forming areas are considered for calculating the corresponding RF or climate im-
pact using different metrics. In some cases, in addition to the ice-supersaturated regions
(ISSR), the Schmidt-Appleman criterion (SAC), which states that contrails form at suffi-
ciently low temperatures and sufficiently moist (relative to liquid water) environments, was
adopted [41–43]. In the literature, the consideration of both ISSR and SAC is referred to
as persistent contrail formation areas (PCFA) [44]. For a detailed classification of these ap-
proaches, interested readers are referred to [18].

The aforementioned approaches to incorporating climate impact into flight planning,
whether through emissions estimation, radiative forcing calculations, or derived climate
metrics, are represented by fuel consumption in the end. In this type of modeling frame-
work, when applied to flight planning, the optimization process typically aims to minimize
fuel consumption, often favoring higher cruise altitudes within vertical constraints. Nev-
ertheless, due to high weather and spatial dependencies of non-CO2 climate effects, there
is a risk of increasing these impacts and potentially offsetting the intended benefits of re-
duced fuel burn. [19,45]. In addition, in the case of avoiding ice-supersaturated areas, not all
contrails have a warming impact (or significant warming impact) that needs to be avoided.
Therefore, even if such modeling approaches result in a mitigation potential, the full poten-
tial of flight planning in the mitigation of climate effects is not realized.
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To more reliably account for climate effects in aircraft trajectory planning, models that
capture the spatiotemporal dependencies of non-CO2 impacts are essential. Currently, only
two state-of-the-art modeling approaches address this need:

• Algorithmic Climate Change Functions (aCCFs): The first attempt to develop a model
capable of providing spatiotemporal information on climate sensitivity to aircraft emis-
sions was made under the EU-project REACT4C1, which led to the development of cli-
mate change functions (CCFs). These functions estimate the impact of aviation emis-
sions in terms of average temperature response (ATR) per flown distance (in terms of
contrails) and per emitted mass (in terms of CO2, NOx, and H2O), represented as five-
dimensional datasets (longitude, latitude, altitude, time, and emission type) [46–48].
ATR quantifies the average change in global temperature over a defined time hori-
zon (typically 20, 50, and 100 years). Due to their computational demands, original
CCFs were not suitable for real-time applications. To address this, algorithmic cli-
mate change functions (aCCFs) were introduced, offering real-time evaluation based
on simplified mathematical formulas using meteorological inputs [19]. These aCCFs
are well-suited for trajectory optimization due to their computational efficiency [49].
An enhanced and harmonized version (in terms of climate metric), aCCF-V1.0a, has
recently been introduced [50–52], which quantifies the effects of NOx, water vapor,
and persistent contrails. An open-source Python implementation is available via the
CLIMaCCF library2.

• Contrail Cirrus Prediction Model (CoCiP): CoCiP quantifies the climate impact of
contrails by simulating their properties (e.g., optical depth), evolution, and resulting
energy forcing (EF), based on meteorological variables such as wind, temperature, and
(relative or specific) humidity [53]. EF is computed by integrating radiative forcing
per unit length and width of the contrail over its lifetime, representing the net energy
added to or removed from the atmosphere. A recent open-source implementation is
provided via the pycontrails library3. While the original Lagrangian (trajectory-based)
version is not compatible with standard flight planning tools, a domain-filling (grid-
ded) version has been proposed to support integration into such applications [54].

In addition to CoCiP and aCCFs, other models have been developed for estimating con-
trail climate effects. The two most well-known models are the Ames contrail simulation
model (ACSM) [55] and the aircraft plume chemistry emission and microphysics model
(APCEMM) [56]. However, due to extensive computational requirements, these models, un-
der their current implementation frameworks, are not feasible for fast function evaluation

1http://www.react4c.eu
2CLIMaCCF library: https://doi.org/10.5281/zenodo.6977272
3pycontrails library: https://doi.org/10.5281/zenodo.7877538

http://www.react4c.eu
https://doi.org/10.5281/zenodo.6977272
https://doi.org/10.5281/zenodo.7877538
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required in climate-optimized flight planning. Nonetheless, ongoing efforts aim to adapt
them to produce outputs that are computationally efficient and suitable for integration into
flight planning frameworks.

With climate impact estimation models available, there is a need to develop flight plan-
ning methodologies that integrate this information in order to plan climate-optimized routes.
Climate-optimal aircraft trajectory optimization problems can be generally categorized into
two levels of analysis: micro-scale, which focuses on individual trajectory optimization, and
macro-scale, which addresses network-level or multi-aircraft optimization. The following
sections review the state-of-the-art literature in both domains.

2.1.2 Micro-scale trajectory optimization

Micro-scale climate-optimal trajectory optimization focuses on planning flight trajectories
for individual aircraft with the primary objective of minimizing their climate impact, while
also accounting for operational cost factors such as flight time and fuel consumption. In this
approach, each flight is treated as an isolated entity, and its trajectory is optimized indepen-
dently of surrounding traffic and the operational constraints of the ATM system.

Numerous studies have investigated the potential of micro-scale trajectory optimization
for mitigating climate effects. A comprehensive review of this body of work is provided
in [18], which surveys research conducted between 2000 and 2022. Table 2.1 summarizes
the most recent contributions in this domain (including post-2022), highlighting trends and
research directions within the field. One trend is the increasing use of models that provide
spatiotemporal information on climate sensitivity to aircraft emissions, most commonly aC-
CFs (e.g., see [22, 57–60]). In parallel, recent efforts have moved toward more realistic oper-
ational scenarios by incorporating structured airspace constraints, as opposed to relying on
fully free-routing conditions [22]. Indeed, optimization within structured airspace is more
complex due to the hybrid nature of the decision space, which involves both discrete and
continuous variables [18, 61].

The other recent direction in the field is the incorporation of uncertainty into the tra-
jectory optimization problem in order to plan robust climate-optimized flight plans. This
is particularly important because the climate impact of non-CO2 forcing agents is highly
complex to model and sensitive to many sources [3]. One of the main sources introducing
direct uncertainty to climate impact estimates is the meteorological conditions. For flight
planning, we rely on weather forecasts, which are inevitably uncertain, especially for vari-
ables required to estimate climate effects, such as humidity fields and radiation parame-
ters [62, 63]. If the weather data used in flight planning fails to accurately capture future at-
mospheric states, the resulting trajectories may not only fail to mitigate climate impacts but
also incur higher operational costs due to deviations from business-as-usual routes, leading
to increased fuel consumption, longer flight times, and elevated CO2 emissions, ultimately
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exacerbating the climate impact rather than mitigating it. Therefore, improving the reliabil-
ity and confidence of climate-optimized flight planning by accounting for uncertainty has
become an increasingly important research focus in recent years.

TABLE 2.1: Overview of recent studies on climate-aware flight planning to mitigate aviation-induced
climate effects. ISSR: ice-supersaturated regions; SAC: Schmidt-Appleman criterion; FFRA: fully free-

routing airspace; GWP: Global Warming Potential; CG: Column Generation.

Study Forcing agents Model Routing Uncertainty Opt. scale ATM KPI Resolution

Yamashita et al. (2020) [57] CO2 and non-CO2 aCCFs FFRA – Micro-scale – –

Lührs et al. (2021) [64] CO2 and non-CO2 aCCFs FFRA – Micro-scale – –

Yamashita et al. (2021) [58] CO2 and non-CO2 aCCFs FFRA – Micro-scale – –

Yin et al. (2022) [50] CO2 and non-CO2 aCCFs FFRA – Micro-scale – –

Castino et al. (2024) [65] CO2 and non-CO2 aCCFs FFRA – Micro-scale – –

Sausen et al. (2023) [66] Contrails ISSR Structured – Micro-scale – –

Frias et al. (2024) [21] Contrails CoCiP Structured – Micro-scale – –

Simorgh et al. (2022) [22] CO2 and non-CO2 aCCFs Structured MET Micro-scale – –

Simorgh et al. (2024a) [60] CO2 and non-CO2 aCCFs FFRA MET Micro-scale – –

Simorgh et al. (2024b) [20] CO2 and non-CO2 aCCFs Structured MET Micro-scale – –

Roosenbrand et al. (2023) [25] Contrails SAC, ISSR Structured – Network-scale Conflict risk –

Zengerling et al. (2024) [24] CO2 and non-CO2 aCCFs Structured – Network-scale Demand –

Demouge et al. (2024) [26] CO2 and Contrails GWP, aCCFs FFRA – Network-scale Demand CG

To date, only two state-of-the-art methods have been proposed for robust flight plan-
ning under meteorological uncertainty, presented in [60] and [22]. These methods address
climate-optimized trajectory planning in free routing and structured airspace, respectively.
Meteorological uncertainty in these works is characterized using ensemble weather forecasts
derived from the ensemble prediction system (EPS), a state-of-the-art numerical weather
prediction framework that provides probabilistic forecasts (typically comprising 50 ensem-
ble members each representing a probable realization of the atmospheric state) by running
multiple simulations with slightly perturbed initial conditions and model parameters [67].
Both studies have released open-source tools implementing their proposed algorithms. The
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tool for free-routing airspace is called ROC4 (robust optimal control for flight planning), and
the tool for structured airspace is called ROOST5 (robust optimization of structured trajec-
tories). These tools represent the most advanced frameworks currently available for robust
climate-optimized flight planning under meteorological uncertainty.

Another direction of the research concerns the scale and representativeness of the traf-
fic scenario under exploration. While many studies focus on the optimization of a single
flight, only a few have considered broader traffic samples or representative subsets of flights
to more reliably assess the achievable climate mitigation potential [20, 21, 64, 66]. For in-
stance, the authors in [64] presented a large-scale study involving approximately 13,000
intra-European flights on a single day, optimizing each trajectory to reduce both CO2 and
non-CO2 climate effects. A more recent study in [20], conducted a year-long analysis ap-
plying climate-aware trajectory optimization to 150 representative European flights per day
within structured airspace. This study examined multiple aspects, including monthly and
seasonal variability of climate effects and potential climate benefits, the proportion of flights
requiring rerouting, changes in flight profiles, and the development of indicators for identi-
fying "big-hit" scenarios, cases where substantial climate benefits can be achieved.

In a related study, Frias et al. [21] conducted a large-scale simulation to evaluate the
feasibility of contrail avoidance within a commercial flight planning system. The study em-
ployed a forecast-based contrail avoidance model that integrated the CoCiP model. Unlike
the conventional approach, which considers hotspot avoidance as a soft constraint in the
objective function, this study implemented contrail avoidance as a hard constraint within
the trajectory planning process. In addition, the work in [66] conducted an operational trial
of contrail avoidance. The trial, conducted in structured airspace and involving over 200
flights, used satellite observations to confirm the outcomes under controlled conditions.

Nevertheless, the analyses performed in all the aforementioned studies, although ex-
tended to a larger number of flights, remain micro-scale in nature, as each trajectory was
optimized independently to mitigate its climate impact, and the results were then aggre-
gated [20,64,66]. This narrow scope overlooks interactions between flights and the resulting
implications on air traffic manageability, thereby raising questions about the reliability of the
reported climate benefit [28].

Climate-optimal trajectories are strategically planned to avoid regions where aircraft
emissions have significant warming effects and, where possible and intended, target ar-
eas with the potential to generate cooling effects [60]. However, this shift in traffic flow
increases congestion within climate-sensitive regions that are favorable for cooling effects
while evacuating warming climate-sensitive areas. Such redistribution of traffic density can
increase traffic congestion in particular areas and trigger new operational challenges. These

4https://github.com/Aircraft-Operations-Lab/roc
5https://github.com/Aircraft-Operations-Lab/roost

https://github.com/Aircraft-Operations-Lab/roc
https://github.com/Aircraft-Operations-Lab/roost
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emergent effects may degrade the performance of the ATM system, ultimately raising con-
cerns about the feasibility of implementing such a routing strategy. Therefore, to reliably
understand the climate impact mitigation potential achievable through flight planning, it is
essential to conduct analyses at the network scale, considering the collective behavior of all
flights within the system.

2.1.3 Network-scale trajectory optimization

Network-scale (macro-level) climate-optimal trajectory optimization refers to the coordi-
nated planning of multiple aircraft trajectories within a shared airspace, with the dual objec-
tive of minimizing environmental impact and ensuring the safety and efficiency of air traf-
fic operations. Unlike micro-scale approaches, which optimize each flight independently,
network-scale flight planning explicitly considers the interdependencies among flights and
their collective impact on the ATM system performance. Such a network-level perspective is
essential, as the air transportation system operates within a complex socio-technical and reg-
ulatory framework. It functions as a highly interconnected network whose overall behavior
cannot be reliably predicted by analyzing individual components in isolation but rather from
the dynamic interactions among them. Thus, the evolution toward climatically oriented air
traffic requires a network-scale framework that can jointly address both environmental and
operational objectives.

The current state of the literature includes limited studies that have partially or fully
investigated climate-aware flight planning at the network scale (see Table 2.1 for an overview
of these studies). Notably, all of these efforts have been conducted in parallel with this
thesis, reflecting a broader and timely shift in the research community toward integrating
environmental considerations into the operational framework.

Among these efforts, two studies have partially addressed the problem by evaluating
the impact of optimized trajectories on ATM system performance. Roosenbrand et al. [25]
proposed a methodology to minimize climate impact through tactical altitude adjustments
and subsequently evaluated the resulting increase in potential conflicts. The study focused
exclusively on contrail formation, identifying contrail-inducing flights and determining the
altitude changes required to avoid ice-supersaturated regions. While this work provides
insights into tactical contrail avoidance, it remains limited to performance assessment and
does not incorporate a resolution framework to address the operational consequences of
trajectory modifications to ensure the operational feasibility of the resulting trajectories.

Similarly, the study in [24] examined the potential for mitigating aviation-induced cli-
mate effects through adjustments to individual flight trajectories and subsequently evalu-
ated their performance at the network level. Focusing on high-impact flights, the authors
applied three modification strategies, vertical, temporal, and integrated, to reduce the cli-
mate impact of both CO2 and non-CO2 forcing agents. A network-level assessment was then
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conducted using sector entry counts and nominal capacity thresholds to quantify the impact
of the proposed adjustments on the performance of the ATM system. However, similar to the
work by Roosenbrand et al. [25], this study was limited to performance assessment and did
not include an optimization framework to address potential demand–capacity imbalances
resulting from the trajectory modifications.

All in all, although network-level performance evaluation is an important step, it must be
complemented by resolution strategies to mitigate the potential degradation in system per-
formance resulting from the adoption of individually optimized trajectories. This includes
addressing adverse effects such as increased conflicts, elevated traffic complexity, higher
controller workload, and demand-capacity imbalances to ensure the operational feasibility
of the climate-optimized flight planning.

Approaches to fully address climate-optimized flight planning at the network scale can
be categorized into two classes: sequential optimization and integrated optimization, as il-
lustrated in Figure 2.1.

2.1.3.1 Sequential optimization

Within the framework of sequential optimization, the overall process is decomposed into
multiple stages. First, all individual flight trajectories are independently optimized with re-
spect to climate impact using micro-scale aircraft trajectory optimization techniques. These
climate-optimal trajectories are then integrated into the network traffic, where their collec-
tive effects on ATM system performance are evaluated using various indicators (presented
in Section 2.2). To address any adverse operational consequences resulting from the adop-
tion of individually optimized trajectories, an additional optimization stage is introduced.
This step aims to ensure the operational feasibility of climate-aware trajectories by modi-
fying them in a manner that preserves their environmental benefits while enhancing traffic
manageability. In this thesis, this adjustment process is referred to as a resolution strategy,
which is described in detail in Section 3.2.2.

To date, the only study that has applied this framework for network-scale flight plan-
ning is the work presented in [26], conducted in parallel with this thesis. The study aims
to minimize the climate impact of aircraft trajectories, specifically contrail formation, while
respecting sector capacity constraints. The model operates in a free-routing airspace envi-
ronment and employs a column generation algorithm to determine feasible, climate-optimal
paths for a set of flights. Each flight selects one trajectory from a set of candidates generated
through a cost-minimizing subproblem, while the master problem ensures that no sector ex-
ceeds its predefined capacity. Climate impact is modeled using either the GWP metric or
aCCFs, depending on the scenario.
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FIGURE 2.1: Frameworks for climate-optimal flight planning at the network-scale.
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2.1.3.2 Integrated optimization

The integrated optimization framework optimizes environmental and operational objectives
within a unified flight planning process. Instead of optimizing each flight independently
and subsequently applying performance assessment and resolution strategy, all trajectories
are planned dynamically in a single step, with the problem formulated either as a multi-
objective or a constrained optimization problem. In this approach, climate impact metrics
and ATM performance indicators are embedded within an integrated framework to directly
generate trajectories that are both environmentally friendly and operationally feasible.

To the best of our knowledge, no prior studies have proposed or implemented such an
integrated framework for network-scale climate-optimal trajectory planning.

2.2 Air traffic performance assessment

To determine the operational feasibility of climate-optimized trajectories, it is necessary to
evaluate their collective performance when implemented across the entire air traffic net-
work. This involves assessing the extent to which such trajectories impact the ATM system’s
ability to manage traffic effectively using key performance indicators. In the literature, al-
though not related to climate impact consideration, a wide range of indicators has been
proposed to evaluate the ATM system performance. These indicators can be broadly cat-
egorized into four main groups: demand and capacity, workload, safety, and complexity
indicators. While these categories are widely recognized, they are not strictly independent;
they may overlap or exhibit interdependencies. The following subsections provide a detailed
examination of each category.

2.2.1 Capacity and demand indicators

This category quantifies the balance between the available resources and the demand placed
on these resources by aircraft operations. They help determine whether the existing ATM
infrastructure can accommodate the planned or actual traffic without compromising safety
or efficiency [68].

Demand-capacity balance (DCB) in ATM is governed primarily by two components: air-
craft trajectories and airspace sectors [69–71]. The airspace is divided into sectors, each de-
fined by specific lateral boundaries and vertical limits (i.e., minimum and maximum flight
levels). Sector configurations may be static or dynamically adjusted based on traffic den-
sity and operational requirements. Sector capacity refers to the maximum number of air-
craft that can be safely accommodated within a sector during a given time interval. It is
typically constrained by physical characteristics and operational factors, including airspace
geometry, staffing levels, controller workload, coordination complexity, and procedural lim-
itations [72]. In contrast, sector demand is directly determined by the planned trajectories of
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aircraft. Demand indicators quantify the number of aircraft expected or scheduled to operate
within a sector over a defined time horizon [73]. Several metrics are commonly employed
to monitor demand dynamics. Among them, the occupancy count (i.e., the number of air-
craft present in a sector at a given moment) and the sector entry rate (i.e., the number of
aircraft entering a sector per unit of time) are widely used in both research and operational
contexts [71, 73].
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FIGURE 2.2: Illustration of sector capacity and demand for two different scenarios. The left fig-
ure shows a uniform distribution of traffic over time, where sector demand remains within capacity
limits, ensuring manageable operations. The right figure presents an imbalanced distribution, with

demand exceeding sector capacity at several time steps and significant underutilization at others.

In the context of climate-aware flight planning, the focus shifts toward demand-related
indicators derived from aircraft trajectories. Climate-optimized routing often deviates air-
craft away from regions associated with high warming potential toward regions where emis-
sions have relatively lower or even cooling effects. This selective avoidance and preference
mechanism alters standard traffic flows, leading to concentrated demand in specific sectors
and generating non-uniform flow patterns. Assuming a fixed sector configuration, demand-
related indicators offer an objective means to quantify traffic redistribution resulting from
the adoption of climate-optimized trajectories. These indicators are essential for identifying
potential bottlenecks or sector overloads. In this context, studies such as [26] and [24] have
employed sector entry counts as performance metrics to evaluate the operational feasibility
of climate-aware flight planning at the network scale.

2.2.2 Workload indicators

Controller workload is an aspect of ATM system performance, reflecting the cognitive and
physical effort required by controllers to maintain safe and efficient operations. While de-
mand can be objectively derived from aircraft trajectories, controller workload is less straight-
forward to quantify and is often assessed subjectively through task analysis [74]. Numerous
studies have evaluated workload by examining specific controller responsibilities such as
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communication, coordination, conflict resolution, and sector scanning. These evaluations
typically rely on subjective measures (e.g., self-assessment questionnaires), physiological in-
dicators such as heart rate variability [75], or operational metrics like task frequency and
average service time [76, 77]. Although these methods offer useful information about con-
troller workload, their dependence on subjective inputs and controller-specific data limits
their direct applicability to strategic planning phases, where trajectories are determined well
in advance.

2.2.3 Safety indicators

Safety is one of the key performance objectives in aviation, focused on ensuring secure air-
craft operations and preventing hazardous events [78, 79]. Over the past five decades, the
measurement and modeling of safety have been extensively studied, leading to the devel-
opment of a wide range of methodologies [80–82]. These approaches can be broadly cate-
gorized into four groups: models that analyze the underlying causes of accidents, models
that estimate aggregate collision risks, frameworks that assess the likelihood and impact of
human error, and approaches that evaluate risks to ground populations, particularly near
airports [83–85]. While these models provide valuable insights, they are predominantly ret-
rospective in nature, relying on historical incident data, accident reports, or human-factor
evaluations [86,87]. As such, their applicability is limited in strategic planning contexts, par-
ticularly during early design phases, where future traffic scenarios must be assessed prior to
implementation [88].

Nevertheless, relative safety performance can be evaluated using simulation-based meth-
ods and trajectory-driven indicators. One widely used example is the number of potential
conflicts (see Figure 2.3), defined as predicted losses of separation based on planned or sim-
ulated trajectories [89, 90]. Although such indicators do not replace empirical safety valida-
tion, they provide insight into the safety implications of new operational concepts, such as
climate-aware flight planning, and contribute to more informed, risk-aware decision-making
in the strategic planning phase.

2.2.4 Complexity indicators

Complexity is a multifaceted concept that reflects the intrinsic effort required to manage a
given traffic situation [91]. The study of complexity in ATM emerged alongside a growing
recognition that conventional capacity–demand metrics are insufficient to fully characterize
operational challenges in dynamic airspace environments [92]. Importantly, high complexity
is not solely a function of traffic volume; rather, it depends on factors such as traffic flow
patterns, the spatial configuration of routes, aircraft interactions, and other dynamic factors
that influence airspace manageability (see Figure 2.4). Unlike simpler metrics such as traffic
count or density, complexity captures qualitative dimensions of traffic scenarios, including



2.2. Air traffic performance assessment 25

tN-1

tN-1

tN

tN

Protected zone

FIGURE 2.3: Potential conflict between two aircraft.

trajectory interactions, maneuvering demands, and spatiotemporal variability [93]. As such,
it has been recognized as a comprehensive performance indicator for the ATM system.

Air traffic complexity is closely interconnected with other ATM performance indicators.
As a vital determinant of workload, complexity reflects the cognitive demands placed on
controllers more effectively than basic traffic volume metrics. For example, a well-structured
traffic scenario with a high number of aircraft may be easier to manage than a disordered
scenario with fewer flights, as organized and predictable flows reduce cognitive load and
coordination effort. From a safety perspective, elevated complexity can be associated with
an increased likelihood of loss of separation, particularly under peak workload conditions.
Unlike static capacity thresholds, complexity-based evaluations provide dynamic, context-
sensitive assessments of sector load, making them especially valuable for proactive traffic
flow management.

Although a universally accepted definition of air traffic complexity has not been estab-
lished, a wide range of metrics has been proposed to capture its various dimensions (see [68]
for a comprehensive review). A widely recognized classification scheme groups these met-
rics into three main categories: structural characteristics, external constraints, and flow char-
acteristics [94].

Structural characteristics refer to the fixed spatial and organizational features of the
airspace that influence traffic patterns and controller workload. These include sector geome-
try and volume, route network design, and crossing points. Although static by nature, these
structural factors play a critical role in shaping aircraft interactions and operational complex-
ity. Studies such as [95] and [94] highlight that fragmented or irregular sector geometries,
characterized by narrow corridors or multiple intersecting routes, can elevate complexity
by increasing coordination demands and reducing maneuverability. To quantify such ef-
fects, metrics like the fractal dimension have been introduced to assess geometric complexity
within route networks [96].
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Organized traffic Complex traffic

FIGURE 2.4: Illustration of traffic complexity levels. The left figure depicts an organized traffic config-
uration with parallel and coordinated trajectories, representing a scenario with low traffic complexity.
The right figure shows a disorganized scenario with intersecting and multidirectional flows, repre-

sentative of high-complexity traffic conditions.

External constraints refer to dynamic and often unpredictable factors that limit the us-
able airspace or restrict traffic flows. These include adverse weather events, temporary ac-
tivation of military zones, reserved or restricted areas, and airspace closures due to emer-
gencies or events. Such constraints reduce the available maneuvering space and may force
rerouting, thereby increasing traffic density and the likelihood of interactions in surround-
ing sectors. For example, Perera et al. [97] demonstrated how the presence of hazardous
weather significantly alters flow distributions and contributes to increased complexity, par-
ticularly when aircraft must deviate from nominal routes and cluster in confined corridors.
External constraints are generally incorporated indirectly into complexity assessments using
adjusted density metrics or scenario-based simulations [94, 98]. Their real-time impacts are
critical, particularly when sudden restrictions cause localized surges in complexity, posing
significant challenges for operational management.

Flow characteristics refer to trajectory-dependent features that influence the complexity
of managing traffic. Unlike static structural factors, flow characteristics directly affect the
potential interactions and the cognitive workload imposed on air traffic controllers. They
are particularly relevant in trajectory-based operations (TBO), where aircraft are no longer
constrained by fixed route networks but instead follow optimized, flexible 4D trajectories.

This dimension of complexity has been extensively studied through metrics such as traf-
fic density [68, 93, 99] and dynamic density [100–102]. Traffic density, typically defined as
the number of aircraft within a sector, is one of the most widely used indicators of air traf-
fic complexity due to its simplicity and availability [68]. However, it has been criticized
for overlooking key aspects such as traffic direction, spatial organization, and interaction
potential. For instance, high-density flows with well-aligned trajectories may be easier to
manage than lower-density but disordered traffic (see Figure 2.4). To address these limita-
tions, Masalonis et al. [99] proposed using peak aircraft count relative to acceptable sector
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thresholds, while Prandini et al. [93] introduced probabilistic models that assess complexity
based on the likelihood of encountering nearby aircraft within spatial buffer zones. Despite
its limitations, traffic density remains a foundational metric for complexity assessment.

To better capture spatial-temporal interaction potential, adjusted density has been pro-
posed in several studies [94, 103]. In this approach, the airspace is divided into uniform
cells, and the ratio between the cumulative time that multiple aircraft occupy the same cell
and the total flight time within that cell is computed. This ratio reflects the duration-based
probability of interaction, where a potential interaction is defined as two aircraft sharing the
same cell from each other’s perspective.

In a similar vein, the complexity score was developed as a composite metric based on
three primary indicators that represent key traffic characteristics: vertical, horizontal, and
speed-related differences among interacting flows [94]. Since the mere presence of two air-
craft in the same airspace volume provides limited insight into the severity or duration of
the associated hazards, these indicators aim to capture more nuanced features of disordered
and difficult-to-manage traffic situations.

Dynamic density is a composite air traffic complexity metric designed to represent the
collective influence of multiple interrelated factors. Dynamic density incorporates both static
features, such as sector volume and route structure, and dynamic features that evolve over
time, including aircraft count, speed, heading variations, and separation distances [102,104].
These variables are combined through linear models using empirically derived weights
[100, 101, 104], nonlinear formulations [100], or machine learning approaches such as neural
networks [105]. The weighting schemes are typically obtained through human-in-the-loop
simulations, subjective controller workload ratings, or regression analysis. While this metric
integrates some structural variables, it is primarily classified as a flow characteristic because
it aims to capture the evolving interaction patterns and real-time control demands associated
with dynamic traffic flows.

Several studies have introduced alternative methods for assessing air traffic complexity
by developing intrinsic, sector-free metrics that do not rely on predefined sector boundaries
or controller interventions [106–108]. For instance, nonlinear dynamical system approaches,
including the use of Lyapunov exponents and topological entropy, assess the predictability
and divergence of aircraft motion over time, thereby capturing the inherent disorder in traffic
flows [106–108]. These models are well-suited for autonomous or decentralized systems,
where trajectory flexibility is high and sector-based assumptions are less applicable.

Further advancements include graph-theoretical approaches that model air traffic as in-
teraction networks, representing aircraft as nodes and potential conflicts as edges. Metrics
such as network connectivity, clustering coefficients, and centrality have been employed to
infer structural tensions and predict conflict propagation within these networks [109].

Although conflict metrics have been commonly classified as safety indicators represent-
ing separation risk [81,110–113], they have also served as complexity indicators [68,114,115].
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Predicted conflicts can indicate regions with high interaction density, thus supporting the
evaluation of traffic manageability. For instance, Roosenbrand et al. [25] employed conflict
counts to evaluate the implications of climate-optimized flight paths on air traffic complexity.
However, given inherent uncertainties in strategic planning, conflict-based metrics should
be cautiously interpreted as indirect indicators of complexity.

2.3 Resolution strategies

Following the evaluation of ATM system performance, any degradation caused by climate-
optimized trajectories necessitates the implementation of corrective measures to compensate
for adverse effects and restore system manageability. In the literature, a variety of strate-
gies have been developed to improve traffic manageability, including sectorization, dynamic
airspace configuration, time-based management, and flight plan modifications [68]. The lat-
ter, in particular, focuses on modifying flight plans at the strategic level to enhance the over-
all manageability of the ATM system.

Since this thesis is grounded in the context of flight planning, the focus is placed on
trajectory-based solutions. Specifically, when adverse effects are observed, additional opti-
mization steps are introduced to adjust aircraft trajectories in order to ensure traffic man-
ageability. These adjustments, referred to in this thesis as resolution strategies, are applied
during the planning phase, i.e., from one day to a few hours prior to the estimated off-block
time, and serve to mitigate the unintended operational impacts of climate-optimized routing
on the ATM system performance.

Resolution strategies, which can be formulated as optimization problems, are typically
classified along several dimensions, including hierarchical structure (centralized or decen-
tralized decision-making), resolution objectives (e.g., minimizing conflicts, complexity, or
controller workload), maneuver types (lateral, vertical, or speed adjustments), and the opti-
mization methods employed [116, 117].

2.3.1 Hierarchical structure

A common criterion for classifying resolution strategies is the level of centralization in the
decision-making process [71,116] (see Figure 2.5). In centralized resolution, a single planning
system holds authority over trajectory modifications and coordinates adjustments across
multiple flights based on a global view of the traffic situation [118]. Centralized methods
reduce uncertainty and facilitate globally efficient solutions, but their performance may de-
grade with increasing traffic density due to the high computational burden and extensive
data requirements [117]. Additionally, they rely on the availability of complete and accurate
data for all aircraft.
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In contrast, distributed6 resolution strategies delegate decision-making to individual air-
craft, allowing them to independently modify their planned trajectories using local or par-
tially shared information [119–121]. These approaches support scalable and adaptive traffic
management, particularly in high-density or unpredictable environments where centralized
coordination may be infeasible. However, the lack of global coordination can lead to subop-
timal system-wide outcomes and increased sensitivity to communication or sensing limita-
tions.

Centralized system Decentralized (distributed) system

FIGURE 2.5: Difference between a centralized and a distributed resolution framework.

2.3.2 Maneuver type

Resolution strategies can also be classified according to the type of maneuver used to achieve
the set objectives. The objective should generally target traffic manageability by incorpo-
rating ATM performance metrics presented in Section 2.2, either individually or in combi-
nation. In parallel, it can also account for climate optimality, for example, by minimizing
deviations from climate-optimized trajectories (for the sequential framework) or directly re-
ducing climate impact (for the integrated framework).

In the literature, resolution maneuvers are typically categorized into four types: lateral
deviations, vertical maneuvers, speed adjustments, and departure time modifications (see
Figures 2.6) [92, 118, 122]. These maneuvers may be implemented either as continuous or
discrete adjustments and are typically subject to constraints imposed by aircraft performance
limitations and the requirement to maintain smooth and operationally feasible trajectories.
These maneuver types can be applied either individually or in combination, depending on
the specific resolution objective and operational context. For instance, speed regulation has
been commonly used for conflict resolution and separation assurance, offering a subtle and
efficient mechanism that avoids large deviations from the planned trajectory [33, 117, 121,

6Throughout this thesis, the terms decentralized and distributed are used interchangeably
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FIGURE 2.6: Different types of maneuvers used for resolution.

123]. Nonetheless, certain head-on or converging conflicts may not be solvable through
speed adjustments alone and could necessitate the use of additional maneuver types.

2.3.3 Optimization method

From the optimization perspective, four primary approaches have been widely employed in
the literature to implement resolution strategies: mathematical programming [124], gradient-
based methods [116], heuristic and metaheuristic algorithms [118], and learning-based tech-
niques [125]. The first three share conceptual similarities, although they differ in how the
optimization problem is formulated and solved. In contrast, learning-based techniques rep-
resent a distinct and emerging paradigm. The following subsections provide a more detailed
overview of these approaches.

2.3.3.1 Mathematical programming

Mathematical programming formulates the resolution problem using mathematical mod-
els with well-defined constraints and objectives. Depending on the problem formulation,
various solution techniques can be applied, such as mixed-integer programming [126–128],
linear programming [129], or semi-definite programming [130,131]. Mathematical program-
ming has been employed in several studies to address resolution problems [26, 132, 133]. In
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[132], the problem was formulated as a mixed-integer linear programming problem, where
the maneuvers were considered to be discrete speed and heading adjustments. The proposed
solution was implemented within a centralized framework and solved using standard MILP
solvers. Similarly, [133] formulated the conflict avoidance problem as a mixed-integer non-
linear programming model, aiming to minimize the magnitude of maneuvering required to
ensure safe separation. Their formulation incorporated both discrete altitude changes and
continuous velocity adjustments, with geometric and probabilistic constraints derived from
relative motion analysis. Like the previous study, their approach was also centralized.

In related work, Demouge et al. [26] formulated the resolution problem as a mathemat-
ical programming model for demand–capacity balancing in air traffic management. The
problem was defined over a set of precomputed trajectories, with binary decision variables
used to assign one trajectory per flight. The resolution strategy was implemented in a cen-
tralized framework and solved using a column generation approach, which decomposed
the problem into a master problem that selects trajectories while satisfying sector capacity
constraints and a pricing subproblem that generates new feasible trajectory options. The
maneuver space included both lateral and vertical deviations.

All in all, mathematical programming approaches, widely applied to resolution prob-
lems, are capable of providing deterministic (global) optimal solutions, though for small-
scale and over-simplified problem instances. Indeed, to ensure tractability, the original prob-
lem must often be reformulated to fit the structure required by mathematical programming
methods. For example, complex decision spaces are discretized into binary or integer vari-
ables, and nonlinear objectives or constraints are approximated or linearized.

2.3.3.2 Gradient-based methods

Gradient-based methods are particularly well suited for solving smooth and continuously
differentiable optimization problems [134]. These problems are typically modeled using
nonlinear programming (NLP), where both the objective function and constraints are dif-
ferentiable. Solutions are obtained through iterative algorithms such as interior-point meth-
ods (IPOPT) or sequential quadratic programming (SQP), both of which are supported by
mature solvers (see [135–137]).

A gradient-based approach was employed in [116] to address the resolution problem
under wind forecast uncertainty, aiming to keep the probability of conflict below a prede-
fined safety threshold while minimizing trajectory deviation. The maneuvers were modeled
as lateral adjustments, implemented by modifying the geographic coordinates along prede-
fined multi-segment trajectories. The problem was formulated as a nonlinear programming
problem and solved in a centralized framework using the SQP algorithm.

When applied to resolution tasks, gradient-based methods can yield accurate solutions
in small- to medium-scale settings with well-behaved and convex cost functions [116, 122].
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However, their applicability becomes limited in real-world scenarios involving discrete de-
cision variables (e.g., sector assignments or route selections), non-convex landscapes with
multiple local minima, or non-differentiable dynamics due to switching behavior or piece-
wise models. Moreover, gradient-based methods are sensitive to initial conditions and may
converge to suboptimal solutions, especially in high-dimensional or tightly constrained search
spaces, which poses challenges for complex air traffic management problems.

2.3.3.3 (Meta-)Heuristic methods

Heuristic and metaheuristic methods are widely applied in resolution problems due to their
flexibility in handling complex, high-dimensional, or combinatorial optimization problems
where exact approaches, such as mathematical programming or gradient-based methods,
may be unsuitable or computationally intractable [116,118]. Rather than guaranteeing glob-
ally optimal solutions, these methods aim to find sufficiently optimal solutions (i.e., approx-
imate global solutions) within a reasonable computation time. Common techniques include
simulated annealing [118], genetic algorithms [138], and ant colony optimization [139], all of
which employ stochastic or nature-inspired search strategies to explore the solution space.

An application of simulated annealing (SA) to strategic conflict resolution under uncer-
tainty has been demonstrated in [118]. In this study, maneuvers were limited to speed ad-
justments along predefined flight plans, maintaining both lateral route and altitude profiles.
The problem was formulated as a discrete optimization task aimed at conflict minimization
within a centralized decision-making framework. Similarly, in [140], the SA algorithm was
employed for conflict resolution using speed and lateral modification.

Similar to mathematical programming and gradient-based methods, most heuristic tech-
niques are commonly implemented within a centralized decision-making framework, wherein
a single agent or authority is responsible for coordinating resolution actions across all flights.
While such centralized strategies facilitate globally consistent and highly coordinated solu-
tions, their computational demands increase with problem size. Furthermore, in dynamic
or high-density traffic environments, the need for frequent re-optimization in response to
evolving traffic conditions or updated information further constrains their real-time appli-
cability. These limitations have prompted growing interest in learning-based approaches,
which offer the potential for decentralized, adaptive, and scalable decision-making.

2.3.3.4 Learning-based approaches

Learning-based approaches have emerged as a promising alternative for addressing large-
scale, high-dimensional resolution problems [120]. Notably, deep reinforcement learning
(DRL) has gained prominence as a powerful framework for sequential decision-making in
dynamic and uncertain environments [141]. By integrating the representational capacity of
deep neural networks with the trial-and-error learning paradigm of reinforcement learning,
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DRL methods are capable of learning policies that map complex traffic states to effective
trajectory adjustments [142]. This enables greater flexibility and adaptability compared to
conventional optimization techniques, which often require re-solving each problem instance
independently.

One of the key advantages of DRL lies in its capacity to generalize from prior experience.
Instead of optimizing from scratch for every new scenario, RL-based models are trained
offline, typically using simulated or historical data, to derive reusable policies that can be
rapidly deployed in real-time operations [143]. This allows for efficient decision-making
with minimal computational overhead during execution. Furthermore, DRL frameworks are
inherently versatile: they can be implemented in both centralized and decentralized archi-
tectures, making them well-suited for a wide range of ATM applications, from ground-based
coordination systems to decentralized, aircraft-level autonomy [144].

In recent years, DRL methods have gained growing application across various domains
of aviation, particularly in air traffic management. Table 2.2 summarizes the most recent
contributions in this domain. For a comprehensive review of these developments, see the
survey by Razzaghi et al. [145].

In the specific context of conflict resolution, several DRL-based strategies have been pro-
posed within single-agent frameworks, addressing both en-route and urban airspace op-
erations [146–148]. For instance, Li et al. [147] introduced a DRL-based strategy for colli-
sion avoidance in unmanned aerial vehicle (UAV) operations, utilizing the deep Q-network
(DQN) algorithm. The proposed framework employed discrete horizontal maneuvers and
was tested in a two-dimensional airspace in a decentralized manner, where each agent made
decisions independently based on local observations. Using the same algorithm, Mollinga
et al. [123] applied DQN to structured en-route airspace. To enhance situational awareness,
the study incorporated graph neural networks (GNNs), enabling the encoding of multi-level
traffic information. The action space was expanded to include altitude, speed, and heading
adjustments, allowing for more flexible conflict resolution.

Further studies on the applications of DRL in conflict resolution have investigated the use
of the deep deterministic policy gradient (DDPG) algorithm. For instance, Wen et al. [149]
implemented DDPG to adjust aircraft heading angles, ensuring conflict-free trajectories. In
a similar vein, Pham et al. [146,150] applied DDPG to train agents capable of recommending
heading adjustments for conflict avoidance in free-routing airspace. Extending this approach
to structured environments, Ribeiro et al. [117] integrated both heading and speed changes
into their resolution strategy using DDPG.

While these studies highlighted the effectiveness of DRL in conflict resolution, they were
limited to single-agent frameworks. In single-agent settings, each agent optimizes its actions
independently without explicitly considering the behaviors or intentions of other agents.
However, real-world air traffic operations are inherently multi-agent in nature, as aircraft
interact within shared airspace and make interdependent decisions. This interactivity gives
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rise to complex learning dynamics that cannot be adequately captured by isolated, single-
agent models. Consequently, there is a growing need to adopt multi-agent reinforcement
learning (MARL) techniques to develop more realistic resolution frameworks that reflect the
interactions among multiple aircraft.

In a basic implementation, Sui et al. [151] proposed a conflict resolution framework for
multi-aircraft scenarios using an independent deep Q-Network (IDQN) algorithm, which
combines DQN with the independent learning framework. In this setup, each aircraft func-
tions as an independent agent, making discrete maneuver decisions, such as speed, altitude,
and heading changes, to resolve conflicts. While the framework offers computational effi-
ciency, it overlooks the interdependencies among agents, which can lead to suboptimal de-
cisions and unstable behaviors in dynamic, interactive environments. This limitation high-
lights the challenge of the non-stationarity of the learning environment, where the actions
of one agent affect the state transitions and reward functions experienced by others, making
the environment inherently non-stationary from each agent’s perspective [152]. This vio-
lates the Markov property assumed in single-agent reinforcement learning and significantly
complicates the convergence of policies, particularly in high-dimensional or tightly coupled
systems. Addressing this issue requires more sophisticated learning architectures and the in-
corporation of explicit coordination mechanisms to ensure stable and effective multi-agent
decision-making.

The application of MARL to conflict resolution was initially pioneered by Brittain et
al. [120] and subsequently advanced through a series of follow-up studies [121, 153]. These
works employed the proximal policy optimization (PPO) algorithm within a multi-agent
framework, where conflict resolution was handled through discrete speed adjustments in
structured en-route airspace. In later developments, fully connected neural networks were
replaced with long short-term memory (LSTM) architectures to enhance the model’s ability
to capture temporal dependencies in sequential decision-making tasks [121]. Additionally,
attention mechanisms were introduced in [153] to allow agents to dynamically focus on rel-
evant neighboring aircraft.

Building on these foundations, Dalmau et al. [154] proposed a PPO-based resolution
framework that integrates MARL with message-passing neural networks (MPNNs), facil-
itating inter-agent communication prior to decision-making. Each agent selects discrete
speed and heading adjustments to resolve conflicts, and the system was evaluated in a
two-dimensional free-routing airspace. In a complementary effort, Zhao et al. [155] devel-
oped a physics-informed DRL framework for conflict resolution, which incorporates domain
knowledge into the learning process to enhance both policy interpretability and training ef-
ficiency. Their strategy involved a combination of discrete and continuous modifications to
heading angle and speed, evaluated in a 2D structured airspace.

More recent contributions have further explored architectural variations. Chen et al.
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[156] introduced a general-purpose MARL approach for real-time conflict resolution in free-
routing airspace, utilizing a Rainbow DQN algorithm. Maneuvers were represented as dis-
crete combinations of speed and heading adjustments, applied through an adaptive strategy
designed to ensure operational feasibility and support trajectory recovery. In a similar line of
research, Papadopoulos et al. [157] developed a conflict resolution framework that integrates
MARL with a graph convolutional neural network (GCN). In their formulation, each aircraft
is modeled as an agent capable of selecting from a discrete set of maneuvers, including lat-
eral deviations, speed changes, and altitude adjustments. Their approach was evaluated in a
free-routing environment and further extended through a DQN-based variant that focused
on discrete heading and speed modifications.

Considering complexity as the primary resolution objective, Ghosh et al. [158] proposed
a deep ensemble MARL framework that integrates the PPO algorithm to reduce conges-
tion and improve schedule adherence by regulating aircraft speed in two-dimensional struc-
tured airspace. To enhance policy stability under varying traffic conditions, the framework
employed ensemble learning techniques. In a related effort, Guo et al. [159] developed a
safety-aware MARL framework, also based on PPO, which incorporates dropout and data
augmentation techniques to increase policy robustness under uncertainty and exposure to
previously unseen scenarios. This model employed discrete speed adjustments and was
evaluated in a similar 2D structured airspace environment.

To address demand–capacity imbalances, Kravaris et al. [160] proposed a MARL frame-
work in which each aircraft agent selects from a predefined set of trajectory modifications,
including ground delays and vertical maneuvers. The approach employed a DQN under a
decentralized execution paradigm, with agents operating in the two-dimensional structured
airspace encompassing Spanish sectors. The framework aimed to mitigate sector conges-
tion and improve overall traffic flow efficiency through coordinated decision-making. In a
related effort, Spatharis et al. [161] introduced a hierarchical MARL algorithm based on Q-
learning to address demand–capacity balancing. Their method focused on strategic ground
delay decisions, with agents interacting within a realistic 2D structured airspace. Learning
was performed under both independent and collaborative settings, depending on the level
of the hierarchical control structure employed.

Overall, deep reinforcement learning–based approaches have shown promise, particu-
larly in terms of scalability and computational efficiency, and are increasingly emerging as a
trend in ATM applications.



36 Chapter 2. State of the art

TABLE 2.2: Overview of recent DRL-based resolution studies. D: Discrete, C: Continuous. FFRA:
Fully free-routing airspace, V: Vertical maneuver, H: Horizontal maneuver, S: Speed regulation. DEC:
Decentralized, DCB: Demand-capacity balancing, DDPG: Deep deterministic policy gradient, DQN:

Deep Q-network, PPO: Proximal policy optimization.

Study Maneuvers Objective Algorithm Env. Framework Hierarchy
Pham et al.
(2019) [150] H (C) Conflict DDPG FFRA (2D) Single DEC

Tran et al.
(2019) [125] H (C) Conflict DDPG FFRA (2D) Single DEC

Wang et al.
(2019) [162] H (C) Conflict Actor-Critic FFRA (2D) Single DEC

Ribeiro et al.
(2020) [119] H, S (C) Conflict DDPG Structured (2D) Single DEC

Hermans et al.
(2020) [163] H (D) Conflict DQN Structured (2D) Single DEC

Wen et al.
(2019) [149] H (C) Conflict DDPG FFRA (2D) Single DEC

Li et al.
(2019) [147] H (D) Conflict DQN FFRA (2D) Single DEC

Mollinga et al.
(2020) [123] V, S, H (D) Conflict DQN Structured (3D) Single DEC

Brittain et al.
(2019) [120] S (D) Conflict PPO Structured (2D) Multi DEC

Brittain et al.
(2021) [121] S (D) Conflict PPO Structured (2D) Multi DEC

Brittain et al.
(2020) [153] S (D) Conflict PPO Structured (2D) Multi DEC

Guo et al.
(2021) [159] S (D) Conflict PPO Structured (2D) Multi DEC

Zhao et al.
(2021) [155] H, S (C/D) Conflict PPO Structured (2D) Multi DEC

Sui et al.
(2021) [151] H, S, V (D) Conflict DQN Structured (3D) Multi DEC

Dalmau et al.
(2020) [154] H, S, V (D) Conflict Actor-Critic FFRA (2D) Multi DEC

Ghosh et al.
(2021) [158] S (D) Complexity Model-Based Structured (2D) Multi DEC

Checn et al.
(2023) [156] H, S (D) Conflict DQN FFRA (2D) Multi DEC

Padpolos et al.
(2024) [157] H, S, V (D) Conflict DQN FFRA (3D) Multi DEC

Kravaris et al.
(2024) [160] Delay, V (D) DCB DQN Structured (3D) Multi DEC

Spatharis et al.
(2024) [161] Delay DCB Q-learning Structured (2D) Multi DEC
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2.4 Discussion and open problems

In the domain of climate-aware flight planning, several open problems exist. One impor-
tant aspect is related to the current scientific understanding of aviation-induced climate ef-
fects, particularly those related to non-CO2 forcing agents, which remain highly uncertain
according to the latest estimates by Lee et al. [3]. Addressing this gap could improve the
reliability of existing models or support the development of new ones, which is crucial for
increasing confidence in the mitigation potential of climate-optimized flight planning. An-
other important problem is the need to move beyond the exclusive focus on conventional
kerosene-powered aircraft in flight planning to evaluate the operational performance and
environmental benefits of next-generation technologies, such as hydrogen-powered aircraft
and sustainable aviation fuels (SAFs). Such evaluations are essential to support informed
strategic decision-making regarding policies and investments in emerging technologies and
alternative fuels to meet climate goals. These research directions, among others in this field,
are actively being pursued by the scientific community and are contributing to a more com-
prehensive understanding of the aviation sector’s potential for mitigating climate impact.

One particularly important yet underexplored research direction concerns climate-optimal
flight planning at the network level, which is the primary scope of this thesis. This research
direction can be approached from several perspectives, which are discussed in the following
subsections.

Network-level evaluation of the feasibility of climate-optimized flight plans

While several studies have advanced micro-scale trajectory optimization techniques, the ex-
tent to which flight planning can reliably function as a climate mitigation measure in real-
world operations remains underexplored. As discussed in Section 2.1.2, the majority of exist-
ing research has focused on optimizing individual trajectories in isolation, thus overlooking
the impact of aggregated optimized flight plans on the overall manageability of air traffic
and the performance of the ATM system. Without a network-level perspective, analyses of
climate impact mitigation are incomplete or even misleading.

Only two studies conducted concurrently with this PhD research [24, 25] have examined
the implications of climate-optimized flight plans on the manageability of traffic, focusing
on metrics such as traffic demand and the number of conflicts. However, these studies fo-
cus on evaluating network-level impacts and do not incorporate any resolution strategies
to compensate for the potential adverse effects. Moreover, performance indicators that are
especially relevant for strategic planning, such as airspace complexity, are overlooked.
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Strategies to address the operational challenges of climate-optimized trajectories

Once the impact of climate-optimized flight plans on traffic manageability has been quanti-
fied, an additional optimization step is required to mitigate any adverse operational effects
in order to ensure the feasibility of these trajectories within the ATM system.

To date, only one study, conducted in parallel with the present thesis, has addressed
this challenge through a mathematical programming framework that selects, from a pre-
defined set of trajectories, those with lower climate impact while also satisfying capacity
constraints [26]. This study represents a step toward addressing the operational manage-
ability of climate-optimized flight plans. Nonetheless, conventional approaches of this kind
face notable limitations in terms of scalability and adaptability, particularly when applied to
large-scale or dynamic air traffic scenarios. Specifically, they rely on extensive pre-processing
to generate multiple trajectory options for each flight, followed by static selection through a
centralized optimization process. Due to the computational burden and limited flexibility of
this approach, it is typically feasible only for regional-scale applications, as was the case in
the referenced study. Moreover, the entire process must be re-executed whenever traffic sce-
narios or environmental inputs change, which restricts its utility in the real-world, dynamic
ATM environment.

An advanced, scalable, and adaptive approach, capable of dynamically adjusting air-
craft trajectories to restore operational feasibility, applicable across a broad range of sce-
narios without requiring extensive data preparation, scenario-specific assumptions, or full
re-optimization, remains an open problem.

Integrated, single-step optimization frameworks for large-scale policy studies

While sequential optimization frameworks, where individual trajectories are first optimized
and subsequently adjusted through a resolution strategy to ensure operational feasibility,
can offer valuable insights into the practicality of climate-aware flight planning and are well-
suited for planning daily operations, their dependence on the initial individual trajectory op-
timization step renders them computationally inefficient for large-scale analyses (e.g., multi-
year flight planning to develop comprehensive incentivizing indicators for stakeholders).
This holds even when advanced micro-scale planning algorithms and scalable resolution
strategies are employed.

To enable large-scale analyses, integrated optimization frameworks that simultaneously
address climate impact mitigation and operational feasibility within a single-step, fast-time
process are needed. To the best of the author’s knowledge, no such integrated approach has
yet been proposed in the literature.
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Chapter 3

Network-scale climate-optimized
flight planning in free-routing
airspace: Heuristic-based approach for
conflict management

This chapter introduces an optimization framework for network-scale climate-aware trajec-
tory planning within free-routing airspace. The proposed framework, depicted in Figure 3.1,
follows a sequential structure. First, individual aircraft trajectories are independently opti-
mized to minimize their climate impact. The integration of these climate-optimal trajectories
into the air traffic management system is evaluated, with particular emphasis on the poten-
tial conflicts. To address conflicts arising from this integration, a resolution strategy is pro-
posed. The resolution process is formulated as a multi-objective optimization problem with
two primary goals: resolving the arising conflicts due to the consideration of climate impact,
and minimizing deviations from the climate-optimal trajectories to preserve environmental
benefits. To solve this problem, a heuristic method based on simulated annealing (SA) is em-
ployed, using aircraft speed profiles as decision variables. The analysis assumes that aircraft
fly at a fixed cruising altitude, resulting in a two-dimensional (2D) optimization.

The remainder of this chapter is organized as follows: Section 3.1 details the micro-scale
trajectory optimization method, Section 3.2 outlines the conflict assessment approach and
the proposed conflict-resolution algorithm, and Section 3.3 presents and discusses the simu-
lation results.

The content of this chapter is adapted from the work published in [164].
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FIGURE 3.1: Workflow of the proposed heuristic-based framework for 2D climate-aware flight plan-
ning considering conflicts at the network scale.
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3.1 Micro-scale climate-optimal flight planning

This section presents a framework for micro-scale trajectory optimization aimed at mini-
mizing the climate impact of individual flights. The optimization problem is formulated
within the framework of optimal control theory and is constrained to two-dimensional (2D)
space, assuming that aircraft cruise at a fixed altitude. To address this problem, the essen-
tial components required for modeling are first introduced, including the aircraft dynamical
model and the climate impact estimation model. These elements are then used to formulate
an optimal control problem, which is solved using the direct optimal control approach to
obtain climate-optimal trajectories. The proposed methodology consists of two steps: tra-
jectory optimization and, then, trajectory prediction considering meteorological uncertainty
(to quantify the associated uncertainty in the aircraft trajectory and its climate impact).

3.1.1 Modeling

Formulating the flight planning problem as an optimal control problem requires several
components. These components are briefly presented in the following.

Aircraft dynamical model

To optimize the flight plan of an aircraft, it is essential to employ a dynamical model that
enables the evaluation of key performance variables, such as flight time and fuel consump-
tion, while ensuring the feasibility of the resulting flight profiles. Within the field of ATM
research, a widely adopted modeling approach is the three-degree-of-freedom (3-DoF) point-
mass model, which captures the principal dynamic characteristics necessary for ATM-related
analyses by representing the aircraft as a point mass navigating through three-dimensional
space [165]. In this chapter, a simplified 2D version of the point-mass model is employed,
assuming flight at a constant cruising altitude:

ϕ̇

λ̇

v̇

ṁ


=



(
v cos χ + wy

)(
RM(ϕ) + h

)−1(
v sin χ + wx

)(
(RN(ϕ) + h) cos ϕ

)−1(
T(CT)−D(CL)

)
m−1

− fc(CT)


, (3.1)

where φ is the latitude, λ is the longitude, h is the altitude, m is mass, RM and RN represent
the ellipsoid radius of curvature in the meridian and prime vertical, respectively, fc is the
rate of fuel burn, T is the magnitude of thrust force, D is the magnitude of drag force, CL is
the lift coefficient, CT is the thrust coefficient, v is the true speed, wx and wy are the wind
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components, and χ is the heading angle. The aircraft’s aerodynamic and propulsive perfor-
mance is characterized using the BADA 4.2 model [166]. In this representation, the state and
control vectors are defined as

x =
[

φ λ v m
]

,

u =
[
χ CT

]
.

(3.2)

In order to account for both physical and operational factors, a set of path constraints is
imposed on thrust coefficient, the Mach number (M), and calibrated airspeed (vCAS):

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

CT,min ≤ CT ≤ CT,max,

M(vtas) ≤ Mmax.

(3.3)

Additionally, the following boundary conditions are imposed on the initial and final values
of the aircraft’s states: [

φ, λ, v
]
(0) =

[
φ0, λ0, v0

]
,[

φ, λ, v
]
(t f ) =

[
φ f , λ f , v f

]
,

m(0) = m0.

(3.4)

It should be noted that the final mass and arrival time of the aircraft are not specified and
will be optimized during the optimization.

Climate impact estimation model

To plan aircraft trajectories with minimal climate effects, we need to include spatiotemporal-
dependent models in the objective function of the trajectory optimizer [18]. The state-of-
the-art approach is to use the aCCFs V1.0a developed within EU-Projects FlyATM4E1 and
ALARM2. These functions estimate climate effects in temperature change computationally
in real-time, thus enabling very fast function evaluation within the optimization.

The aCCFs provide spatiotemporally resolved information on aviation-induced non-CO2

climate effects. They take as inputs specific weather variables and provide information on
the climate impact of water vapor emissions, NOx-induced methane, NOx-induced ozone,
and persistent contrails using average temperature response (ATR) over a 20 years time hori-
zon (ATR20) as the climate metric. Note that the formulations express the relationship be-
tween climate effects and meteorological variables exhibiting the highest correlations, as
identified through detailed simulations with a global climate–chemistry model. Depending

1https://flyatm4e.eu/
2https://alarm-project.eu/
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on the aCCFs version, emission scenario, and time horizon considered, the parameters ρ(·)
are selected accordingly.

• NOx emissions: The net climate impact of NOx emissions is represented as the sum
of warming from NOx-induced ozone and cooling from NOx-induced methane reduc-
tion. These effects are formulated as functions of local temperature (T), geopotential
height (GH), and incoming solar radiation (Fin):

aCCFO3 = max (0, ρ11 + ρ12T + ρ13GH + ρ14T · GH) , (3.5)

aCCFCH4 = min (0, ρ21 + ρ22GH + ρ23Fin + ρ24Fin · GH) . (3.6)

• Water vapor emissions: The warming effect of emitted H2O is modeled based on po-
tential vorticity (PV):

aCCFH2O = ρ31 + ρ32 |PV| . (3.7)

• Contrail cirrus: The climate impact of contrail cirrus is modeled separately for day-
time and nighttime, as they exhibit distinct radiative effects: daytime contrails can
contribute to both warming, by trapping outgoing longwave radiation, and cooling,
by reflecting incoming solar radiation. In contrast, nighttime contrails cause warming,
as the absence of solar radiation eliminates the cooling effect.

For daytime contrails, outgoing longwave radiation (OLR) is identified as the most
representative variable based on correlation analysis:

aCCFday = ρ41(ρ42 + ρ43 ·OLR). (3.8)

For nighttime contrails, a temperature-dependent formulation is used:

aCCFnight = max
(

0, ρ51

(
ρ52 · 10ρ53·T − ρ54

))
. (3.9)

• Carbon dioxide (CO2) emissions: Due to its long atmospheric lifetime, the climate
impact of CO2 is considered independent of the emission location and is therefore rep-
resented by a constant factor:

aCCFCO2 = ρ16. (3.10)

As evident from the aCCF formulations, they allow for real-time evaluation of climate im-
pacts, making them efficient for use in flight planning (interested readers are referred to [167]
for a detailed description of the aCCFs). Recently, a Python library called CLIMaCCF has
been developed, implementing different versions of aCCFs with various emission scenar-
ios, time horizons, and other user-defined settings. It is publicly available at DOI: https:
//doi.org/10.5281/zenodo.7074582.

https://doi.org/10.5281/zenodo.7074582
https://doi.org/10.5281/zenodo.7074582
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Uncertainty

The climate impact of non-CO2 emissions highly relies on meteorological conditions, includ-
ing temperature, relative humidity, and outgoing longwave radiation [57, 168]. Therefore, a
factor that can affect the reliability of the quantified climate impacts is the quality of the
weather forecast [49]. The weather forecast is inevitably uncertain, which can also affect air-
craft performance variables (e.g., flight time and fuel consumption) due to dependency on
wind and temperature [169]. Ensemble prediction systems (EPS) have been introduced to
quantify the uncertainties associated with weather forecasts, providing a collection of NEPS

probable realizations of weather situations, called ensemble members [170]. Forecasts within
EPS can be obtained using different techniques. For instance, in one approach called ensem-
ble data assimilation, the initial conditions and/or parameters of models used in producing
forecasts are perturbed.

3.1.2 Trajectory optimization

For optimizing aircraft trajectory, we take the mean values of the ensemble weather vari-
ables and solve the problem in a deterministic manner using the aircraft dynamical model
(Equation (3.1)), path constraints (Equation (3.3)), boundary constraints (Equation (3.4)), and
the following objective function:

J = CI
[

Ct ·
[
t f − t0

]
+ C f ·

[
m(t0)−m(t f )

]︸ ︷︷ ︸
SOC

]
+ C · EI

∫ t f

t0

5

∑
i=1

ATRmean
i

(
t, x(t), u(t)

)
dt︸ ︷︷ ︸

ATR

,

(3.11)

for i ∈ {CH4, Contrails, O3, H2O, CO2}, where x(t) and u(t) are the state and control vectors,
respectively, and SOC is the simple operating cost [57]. ATRmean

i is the ATR for the agent i
calculated from considering mean values of ensemble members. The ATR for different non-
CO2 species are calculated as follows:

ATRO3(t, x, u) = 10−3 × aCCFO3

(
t, x) · EINOx(t, x, u) · fc(u),

ATRCH4(t, x, u) = 10−3 × aCCFCH4

(
t, x) · EINOx(t, x, u) · fc(u),

ATRContrails(t, x) = 10−3 × aCCFContrails(t, x) · vgs(t),

ATRH2O(t, x, u) = aCCFH2O(t, x) · fc(u),

ATRCO2(t, x, u) = aCCFCO2 · fc(u),

(3.12)

where vgs is the ground speed and EINOx(t, x, u) is the NOx emission index calculated using
Boeing Fuel Flow Method 2 [40]. To explain how the ATRmean

i for the agent i is calculated,
let us consider aCCF of water vapor. According to [57], the aCCF of water vapor depends on
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the meteorological variable potential vorticity. Since within EPS, we are provided with NEPS

forecasts, NEPS different aCCF values can be calculated for water vapor. Thus, ATRmean
H2O (·)

indicates that the ATR is calculated from considering the average of aCCF values obtained
from different ensemble members.

As can be seen in Equation (3.11), the defined objective function considers both climate
impact and cost. Normally, there exists a trade-off between these two objectives. Weighting
parameters environmental index (EI) and cost index (CI) determine the importance of these
objectives compared to each other. Moreover, constant parameters Ct and C f are used to
allow different explanations of cost, and C adjusts the order of climate impact with cost.

The direct optimal control approach, as an efficient technique for solving highly nonlin-
ear dynamical optimization problems with different sets of constraints, is employed to solve
the formulated trajectory optimization problem [171]. In this approach, the dynamical opti-
mization problem (trajectory optimization problem in our case) with the objective function,
dynamical model, and different types of constraints (e.g., path and boundary constraints)
is transcribed to a nonlinear programming problem (NLP) represented with the following
general form [172]:

min
Θ

JNLP(Θ) (3.13)

s.t Φi(Π) = 0 i = 1, · · · , nω (3.14)

Ξi(Θ) ≤ 0 i = 1, · · · , nξ (3.15)

where the vector Θ ∈ RnΘ includes the decision (or NLP) variables, and equality and in-
equality constraints are represented by Equation (3.14) and Equation (3.15), respectively. The
optimal solution to the original dynamical optimization problem is obtained by solving the
resulting discretized problem. The NLP problems can be solved using various techniques,
such as gradient-based and meta-heuristic methods. Moreover, several efficient software
packages, including IPOPT [173] and SNOPT [174], exist for solving such a class of opti-
mization problems. Interested readers are referred to [172] for more details on the direct
optimal control approach.

After solving the trajectory optimization problem, an optimal trajectory for the aircraft
i-th is received and denoted as Γo

i := (φo
i , λo

i , vo
i ).

3.1.3 Ensemble trajectory prediction

To assess the associated uncertainty in the aircraft trajectory and its climate impact, we eval-
uate the performance of the optimized trajectory Γo

i := (φo
i , λo

i , vo
i ) for all ensemble members.

First of all, we assume a unique lateral path and speed profile (obtained from trajectory op-
timization) for all ensemble members. The consideration of a unique lateral path implies a
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constant aircraft course (ψo). In this case, the uncertainty will affect ground speed as:

vj
gs =

√
v2 + wj2

c + wj
a, (3.16)

where wa and wc are the decomposition of wind along the along-track and cross-track di-
rections, respectively, and (·)j denotes the ensemble member j. The uncertainty in ground
speed affects the time aircraft flies the trajectory through:

dtj

ds
= (vj

gs)
−1, (3.17)

where tj is the flight time associated with the ensemble member j and s is the distance flown
along route. The fuel consumption is also predicted in a similar way. Now, we consider the
range of uncertainty in the climate impact. For the ensemble member j, one has:

ATRj =
∫ tj

f

tj
0

5

∑
i=1

ATRj
i

(
tj, xj(tj), u(tj)

)
dtj, (3.18)

where the superscript j in xj is due to the calculated ensemble values for aircraft mass within
the ensemble trajectory prediction. For the unique profile determined in the optimization
step, the effects of uncertainty are quantified and reflected on the flight time, fuel consump-
tion, and climate impacts, which are included in:

Pi := {(t1
i , · · · tNEPS

i ), (m1
i , · · ·mNEPS

i ), (vgs
1
i , · · · vgs

NEPS
i ), (ATR1

i , · · ·ATRNEPS
i )}. (3.19)

3.2 Conflict assessment and resolution

The implementation of independently climate-optimized trajectories may lead to the emer-
gence of traffic bottlenecks, as multiple flights tend to avoid warming climate-sensitive re-
gions. This can increase the likelihood of congestion in certain areas, raising operational
concerns regarding the feasibility of such trajectories. In this respect, a preliminary step to-
ward planning operationally feasible trajectories within the network scale is to evaluate the
operational challenges arising from the adoption of climate-optimized flight plans on the
ATM system performance and subsequently develop resolution strategies to mitigate any
adverse effects.

In this chapter, the impact of employing climate-optimal trajectories at the network scale
is assessed in terms of the number of conflicts (presented in Section 3.2.1). Then, a resolution
strategy is proposed to mitigate the encountered conflicts (Section 3.2.2).
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FIGURE 3.2: Grid-based representation of space duplicated with the number of ensemble members
[140].

3.2.1 Probabilistic conflict assessment

A conflict is defined as a predicted situation in which an aircraft is expected to lose its min-
imum separation from other aircraft or airspace constraint within a specified look-ahead
time, if no corrective action is taken. One criterion of standard separation is D0 = 5 NM of
horizontal distance and H0 = 1000 ft vertical distance. In other words, a cylinder with a 5
NM diameter and 1000 ft height can represent a protected zone for each aircraft that should
not be intersected with other aircraft-protected zones. The aim of conflict detection is to
predict the probable loss of separation that may occur in the future at a specific time and po-
sition. Conflict detection for large-scale scenarios generally suffers from computational time
since most algorithms compute conflicts pairwise. Moreover, the input trajectories for con-
flict detection may have some perturbations due to the consideration of uncertainty, such as
the ones proposed in Section 3.1. To deal with the mentioned concerns (i.e., computational
time and uncertainty), we employ the probabilistic grid-based technique firstly proposed
in [175]. Within this technique, aircraft trajectories are saved into grid cells (the size of each
cell should be greater than or equal to the minimum standard separation) as depicted in
Figure 3.2. The conflict between aircraft k and l is evaluated if their assigned cells are the
same or are neighboring. In this case, their distance corresponding to the ensemble member
j is computed at the time instant ∆tn. If the computed distance is less than the standard
separation, there exists a conflict, i.e.,

pj
kl =

1 if dj
kl < D0 and hj

kl < H0

0 else
(3.20)
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where dkl and hkl are their relative horizontal and vertical distances, respectively. The proba-
bility of conflict between aircraft k and aircraft l is then calculated over all ensemble members
as:

Pc,kl =
1

NEPS

NEPS

∑
j=0

pj
kl , (3.21)

where NEPS represents the number of ensemble members.
One challenge associated with the implementation of this method is the required mem-

ory to store all grids. To deal with this issue, the hash table structure is employed [176]. The
hash table extensively reduces the required memory as we neglect empty cells.

3.2.2 Conflict resolution

The resolution strategy can be formulated as a nonlinear programming problem with the
following two objectives, subject to a set of operational constraints:

• Minimize the number of high-probability conflicts.

• Minimize the deviation of the modified trajectories from the climate-optimal ones.

These objectives are mathematically modeled and included in the following cost function:

JR = β.K.CC + (1− β)
N

∑
i=1

(∆vi), (3.22)

where N represents the number of flights. β ∈ [0, 1] is a weighing parameter that deter-
mines the importance of the mentioned objectives compared to each other, K is the scaling
parameter, and CC is the cost of conflicts defined as:

CC =
N

∑
k=1

N

∑
l=1,l ̸=k

Υkl , Υkl =

1 if Pc,kl ≥ Pτ,

0 else,
(3.23)

where the parameter Pτ is a user-defined probability threshold that allows users to adjust
the level of conservativeness. For instance, Pτ = 0 considers all possible conflicts caused by
ensemble members (both high and low probability conflicts) to be resolved, while Pτ ≥ 0.5
only considers those conflicts that occur at least within half of the ensemble members.

The decision variables of the optimization problem are the true airspeed of each flight.
The speed change (deviation (∆v) from climate-optimal speed (vo)) is constrained as:

−0.04vo ≤ ∆v ≤ 0.04vo. (3.24)

Due to the complexity of the optimization problem (i.e., a large number of decision vari-
ables), we rely on the SA algorithm as the solution approach [118]. The SA algorithm,
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inspired by the annealing process, aims at reaching the minimum energy of the metal by
rearranging its particles. This algorithm is based on temperature change through the heat-
ing and cooling process. In the heating process, the particles have enough freedom to move
around in random directions. By reducing the temperature, they tend to find a new stable
configuration to achieve minimum energy [177]. The SA in optimization applications uses
the same strategy to minimize a defined objective function. A neighbor solution is generated
at each iteration, and its associated cost is compared with the current solution. The generated
solution at each iteration is accepted with a probability that is related to the temperature and
the difference between the current and new costs. At the beginning of the process, when the
temperature is high, the worst solutions (i.e., the solutions that yield higher costs compared
to the previous step) are more likely to be accepted. The acceptance rate of the worst solu-
tions is reduced within the cooling process. The property to accept worse solutions provides
the ability to avoid getting stuck in local minima and is one of the main advantages of SA
over the gradient-based solvers, such as interior-point, and successive quadratic program-
ming [177].

For the considered resolution problem, at each iteration, a neighbor solution is generated
from the neighborhood function presented in Subsection 3.2.2 and the objective function
Equation (3.22) is re-evaluated (see Figure 3.1). The new cost JR,n is compared with the
current cost JR,c and accepted with the following probability:

Pacc =

1 if JR,n ≤ JR,c

e−(JR,n−JR,c)T−1
else.

(3.25)

According to Equation (3.25), if the cost associated with the neighbor solution is improved,
it is accepted, and in the case of degradation, it is accepted with the defined probability
(obtained from the Boltzmann distribution).

Neighborhood function

At each iteration within SA, new solutions need to be generated, called neighbor solutions.
Here, we propose a neighborhood function to generate candidate solutions by modifying the
aircraft’s true airspeed. To avoid blindly exploring within a large search space, we inform the
algorithm only to modify the trajectories of aircraft in conflict. The proposed algorithm starts
from a set of climate-optimal trajectories (determined in section 3.1) as the initial solution S0

with the cost JR,0. At each iteration, the neighborhood function generates a neighbor solution
Sn with the cost JR,n. The steps to generate a neighbor solution within the neighborhood
function are as follows:

1. Two sets of aircraft are selected independently: Ω1, comprising 20 aircraft with the
highest number of conflicts, and Ω2, comprising 20 aircraft with the largest deviation
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from optimal speed.

2. An aircraft Acm is selected for trajectory modification with the probability β from the
set Ω1, and 1− β from the set Ω2. By this setting, with increasing β, the aircraft with a
higher number of conflicts are more likely to be selected for the resolution.

3. The airspeed vm of Acm is modified within the defined permissible range, and its asso-
ciated performance Γm is re-computed employing the ensemble trajectory prediction
method presented in Section 3.1.3.

The SA algorithm and the proposed neighborhood function are presented in Algorithm 1.
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Algorithm 1 SA Algorithm

Require: Ntr, α, Tin, Tf , β
Require: A set of climate-optimal trajectories S0

Tc ← Tin , JR,c ← JR,0 , Sc ← S0
while Tc < Tf do

Nc ← 0
while Nc < Ntr do

From Sc get subsets Ω1 and Ω2.
Get a random number p ∈ [0, 1]
if p ≤ β then

Get random aircraft Acm ∈ Ω1
else

Get random aircraft Acm ∈ Ω2
end if
Get random number γ ∈ [0.96, 1.04]
vo

m × γ
Predict the aircraft performance Γm
Compute JR,n
if JR,n ≤ JR,c then

Replace the new profile of Acm in Sc
JR,c ← JR,n

else
Get a random number σ ∈ [0, 1]
Pacc ←e−(JR,n−JR,c)T−1

if σ < Pacc then
Replace the new profile of Acm in Sc
JR,c ← JR,n

end if
end if
Nc ← Nc + 1

end while
Tc ← Tc × α

end while
S∗ ←Sc
Return S∗

3.3 Simulation results

A case study including 1006 flights is presented to illustrate the applicability of the proposed
methodology. In Section 3.3.1, the independently optimized trajectories are determined for
different routing options. The implications of adopting these optimized trajectories at the
network scale are evaluated in Section 3.3.2, focusing on the resulting number of conflicts.
Finally, the identified conflicts are addressed through the resolution strategy presented in
Section 3.3.3.
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3.3.1 Trajectory optimization

The flight data have been extracted from Eurocontrol’s Demand Data Repository (DDR2)
dataset3 by limiting airspace to an area mainly covering Spain and Portugal on May 6th

2018, from 12:00 to 16:00. The information regarding the origin, destination, cruise altitude,
and flight time has been provided within the DDR2 dataset. The aircraft models are all
considered to be A330-341 with an initial mass of 200 tons.

To model the uncertainty in meteorological variables, the ERA5 reanalysis data, contain-
ing ten ensemble members, is adopted and used in trajectory optimization and prediction
steps. Due to ease of availability, we employ this dataset in this study; however, forecast
data with a different number of ensemble members can be employed in a similar manner.

The extracted flights are optimized with the direct optimal control approach for the
problem formulated in Section 3.1, considering the mean values of ensemble members for
weather variables. We use the Trapezoidal rule to transform the original optimal control
problem into a nonlinear programming problem. The resulting NLP problem is then solved
using the IPOPT solver in Python, employing the interior-point method to find the optimal
solution. The number of discretization nodes is Nd=100. The discretized shortest path is
considered the initial guess for the optimizer.

The trajectories are optimized in 2D airspace for eight different environmental indices
(i.e., EI [-]), considering CI = 1.0 [-], Ct = 0.75 [USD/s], C f = 0.51 [USD/kg], and C = 1014

[USD/K]. To quantify the uncertainty in the flight performances due to the ensemble mem-
bers, the ensemble trajectory prediction proposed in Section 3.1.3 is implemented. For each
weighting coefficient, the computational time to solve the trajectory optimization and pre-
diction for all flights is approximately 100 minutes (i.e., 6s per flight). The optimized tra-
jectories for two environmental indices are depicted in Figure 3.3. According to the recent
studies employing aCCFs to quantify climate impact ( [57,58]), the climate effect of contrails
outweighs the impacts caused by other species. To this end, the optimized trajectories are
plotted with the aCCF of contrails on different flight levels.

Figure 3.3a shows the pure cost-optimal trajectories (i.e., EI = 0.0). It can be seen that
contrail-sensitive regions are crossed by aircraft. Whereas, as can be observed in Figure 3.3b,
these regions are mostly avoided with the climate-optimal routing option, associated with
EI = 1.0. For the flight levels with no persistent contrail formation, such as FL280 and FL300,
both routing strategies result in almost similar trajectories.

The effects of increasing EI on ATR and simple operating cost are shown in Figure 3.4a,
and 3.4b, respectively. As can be seen, higher EI values mitigate the climate impact, albeit
with an associated increase in operational cost. The error bars in Figure 3.4a and 3.4b show

3https://www.eurocontrol.int/ddr

https://www.eurocontrol.int/ddr
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(A) cost-optimal routing option (EI = 0.0)

(B) climate-optimal routing option (EI = 1.0)

FIGURE 3.3: Lateral paths depicted with the contrail-sensitive regions (aCCF of contrails) as col-
ormaps for different flight levels.
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A B

DC

FIGURE 3.4: The obtained performances for different EI values. SOC and ATR have been divided by
the number of flights.

the ranges of uncertainty (standard deviation) due to the ensemble forecast. The Pareto-
frontier, showing the trade-off between climate impact mitigation potential and relative in-
crease in cost, is given in Figure 3.4d. It can be concluded from Figure 3.4d that there is a
potential to reduce the climate impact by 28% at the expense of accepting a 3% increase in
operating cost.

3.3.2 Conflict assessment

To see how the adoption of climate-optimized routes affects the complexity of the traffic,
the number of conflicts is calculated using the approach presented in Section 2.2. This ap-
proach is particularly suitable for evaluating potential conflicts given its relatively efficient
computation and its compatibility with uncertainty-aware modeling [116]. Nevertheless,
alternative conflict detection techniques, such as analytical closest-point-of-approach [122],
can also be used, particularly when higher geometric precision or explicit risk estimation is
required. These methods, however, tend to face scalability limitations in high-density traffic
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FIGURE 3.5: Lateral paths with the location of high and low probability conflicts for different EIs.

scenarios. While their performance can be enhanced through spatial or temporal filtering,
this often comes at the cost of increased implementation complexity.

The airspace is divided into a four-dimensional grid spanning latitude, longitude, alti-
tude, and time. Each grid cell has dimensions of 0.1◦ × 0.1◦ × 1000 f t × 1s, which is small
enough that no conflict is missed. We define a probability threshold (Pτ = 0.5 in this study)
to differentiate between low and high probable conflicts. The conflicts with a probability less
than 0.5 are labeled as low probability conflicts, and vice versa for high probability ones.

The number of conflicts for the considered EI values is shown in Figure 3.4c, illustrating
that climate impact reduction is achieved at the expense of higher potential conflict occur-
rence. Therefore, in addition to the cost, the increase in the number of conflicts is another
challenge that arises when considering climate impact. To depict this, the geographical lo-
cations of conflicts for different routing options are plotted in Figure 3.5. From Figure 3.5, it
can be seen that regions with low or negligible contrail-induced climate impact become more
congested with increasing EI. This is because the aircraft tend to fly in these areas to mitigate
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climate impact, resulting in a predicted loss of standard separation between aircraft.
Therefore, there exists a trade-off between mitigating the climate impact and the number

of conflicts. Figure 3.4d shows that a 28% reduction in climate impact is achieved at the
expense of a 65% increase in the number of conflicts, for EI = 1.0. It is worth mentioning that
the range of uncertainty in the obtained cost (Figure 3.4b) is negligible. Moreover, most of
the conflicts are high probable ones. One justification for such a low impact of uncertainty
is the usage of reanalysis data. For weather forecast data, the ranges of uncertainty for the
same scenario are expected to be higher.

3.3.3 Conflict resolution

As shown, the mitigation of climate impact is achieved at the expense of an increase in the
number of potential conflicts for higher EI values. To strategically resolve the encountered
conflicts, we employ the resolution algorithm presented in Section 3.2.2. To this end, four
sets of optimized trajectories associated with different EIs (i.e., EI ∈ [0.0, 1.0, 5.0, 10.0] ) are
selected for the resolution process.

For each set of trajectories, the proposed SA Algorithm 1 is implemented in Python for
four different weighting coefficients β’s (i.e., β ∈ [0.0, 0.1, 0.5, 1.0]), considering K = 200, and
Pτ = 0.5. At each iteration within the resolution algorithm, after modifying the speed of air-
craft in conflict, the total number of conflicts between all aircraft is re-evaluated to consider
the domino effect of de-conflicting one pair of aircraft on the others. The performance of the
proposed resolution strategy in terms of climate impact, cost, and the number of conflicts is
depicted in Figure 3.6 for different EI and β values.

As can be seen in Figure 3.6, for all sets of trajectories corresponding to different EI val-
ues, by increasing β, the number of high probability conflicts is reduced by a slight increase
in cost and climate impact. The trade-off between reducing conflicts and relative increases in
cost and climate impact is depicted in Figure 3.7 for different sets of optimized trajectories.
Figure 3.7 indicates that a reduction in conflicts can be achieved at the cost of a marginal
increase in both operational cost and climate impact. In all cases, by accepting less than 0.5%
increase in cost and climate impact, the conflicts are reduced at least by 20%. It is worth
mentioning that by increasing EI, the potential to resolve conflicts is reduced.

The limited effectiveness of the proposed conflict resolution algorithm, particularly for
trajectories corresponding to higher EIs (i.e., lower climate impact), stems from the assump-
tions adopted in this analysis. In the first stage of the framework, trajectory optimization
was performed only in the lateral dimension, with flight levels kept fixed. This constraint
restricts flexibility, as the only available option to reduce climate impact is to reroute aircraft
around climate-sensitive regions, causing redistribution of traffic and increased concentra-
tion of trajectories in neighboring regions, which in turn elevates the likelihood of conflicts.
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(A) EI = 0.0

(B) EI = 5.0

(C) EI = 10.0

FIGURE 3.6: The obtained results from the resolution method for different routing options. For each
routing option, the effects of increasing β (i.e., the weighing parameter in the cost function Equation

(3.22)) on the number of conflicts, simple operating cost, and climate impact are depicted.

Since all conflicts occur within the horizontal plane and the resolution algorithm can only
adjust speed profiles to modify temporal separation, its ability to generate fully conflict-free
solutions is inherently limited. In particular, head-on conflicts cannot be resolved using
speed adjustments alone. Furthermore, because the permissible range of speed variations is
small, the achievable separation distances remain insufficient to eliminate all crossing con-
flicts. These results highlight the need to expand the decision space to incorporate vertical
and lateral maneuvers, thereby improving conflict resolution effectiveness.

Finally, the trade-off between reducing the number of conflicts and deviation from op-
timal speeds (obtained from trajectory optimization) is depicted in Figure 3.8 by means of
Pareto frontiers. The results indicate that the reduction of conflicts results in an increase in
deviation from climate-optimal speed.
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EI = 0.0 EI = 1.0

EI = 5.0 EI = 10.0

 β  β

 β  β

FIGURE 3.7: Pareto-frontiers obtained by employing the proposed probabilistic resolution method
for different sets of optimized trajectories (i.e., different EI values). The Pareto frontiers show the
trade-off between decreasing the number of high-probability conflicts and relative increases in cost

and climate impact obtained using different β values.

EI = 0.0 EI = 1.0

EI = 5.0 EI = 10.0

 β  β

 β
 β β

 β
 β

FIGURE 3.8: Pareto-frontiers obtained by employing the proposed probabilistic resolution method
for different sets of optimized trajectories (i.e., different EI values). The Pareto frontiers illustrate the
trade-off between reducing the number of high-probability conflicts and the increase in deviations of

speeds from the optimized ones obtained using different β values.
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A brief summary of the performance of the proposed resolution algorithm is presented
in Table 3.1. An observation from the number of modified aircraft trajectories implies that
in almost all scenarios, less than 10% of aircraft trajectories are modified. Moreover, the
number of seeded-up aircraft is almost similar to the slowed-down ones. Since the focus
of resolution is on reducing high-probability conflicts, an increase in the number of low-
probability conflicts is observed across all cases.

3.4 Summary

This chapter introduced a framework for climate-optimal flight planning at the network
scale. A realistic traffic scenario over Spanish airspace, comprising 1006 flights, was used to
evaluate the performance of the proposed approach. Initially, all flights were individually
optimized under various routing objectives, ranging from cost-optimal to climate-optimal
trajectories. The effects of adopting these climate-optimized routes were subsequently as-
sessed in terms of operational cost and the number of conflicts. Pareto-frontiers were pro-
vided to study the existing trade-offs between climate impacts, operating cost, and the num-
ber of conflicts.

The results demonstrated that the number of conflicts increases as we employ trajectories
with lower climate impact. For example, in the considered case study, an overall 28% reduc-
tion in climate impact increased the number of conflicts by 65%, while a 7% more reduction
in climate impact was achieved at the expense of a 110% additional increase in the number
of conflicts, which must be crucially taken into consideration.

Subsequently, a strategic conflict-resolution procedure was implemented using the SA
algorithm to see how many conflicts can be reduced with only speed modifications and
different weights penalizing deviation from climate-optimal trajectories. The results showed
that by accepting less than 0.5% increase in cost and climate impact, at least 20% of conflicts
could be resolved for all routing options. However, the potential to reduce conflicts using
speed change as the only decision variable is decreased by accepting trajectories with lower
climate impacts. For instance, for the cost-optimal routing option, 80% of the conflicts are
resolvable, whereas, for the trajectories with less climate impact, the reduction is limited to
25%. Including other decision variables in the resolution, such as lateral path and altitude,
are alternatives that can increase this potentiality by resolving encountered conflicts in a
more efficient manner (having more degrees of freedom).

It should be noted that in this study, the main goal was to establish an overall under-
standing of the potential mitigation of climate impact by trajectory planning and the asso-
ciated effects on traffic patterns. In this respect, the same aircraft type (i.e., A320-214) was
considered to create an initial picture of these aspects while avoiding introducing additional
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elements that could bias and complicate the analysis. However, incorporating a heteroge-
neous fleet would introduce variation in optimal trajectories, particularly in altitude selec-
tion under identical weather conditions. Such differences in traffic patterns could affect sev-
eral key performance metrics discussed earlier, including spatial distribution and number
of conflicts, the magnitude of climate impact mitigation, and the corresponding operational
cost. Therefore, the proposed frameworks should be extended to accommodate mixed-fleet
operations to align more closely with operational practices.
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Chapter 4

Network-scale climate-optimized
flight planning in free-routing
airspace: Multi-agent RL approach for
conflict management

The previous chapter introduced a sequential framework for network-scale climate-optimal
flight planning, in which the impact of climate-aware trajectories on ATM system perfor-
mance was first evaluated, focusing on the number of potential conflicts, followed by the
development of a resolution strategy to mitigate the resulting conflicts. While the approach
demonstrated the feasibility of reducing climate impact in an operationally manageable
manner, it exhibited limitations related to the scope of the scenario considered and the res-
olution method. With regard to the scenario, the analysis was restricted to flight planning
with constant flight levels and was confined to a regional-scale scenario, thereby limiting
the generalizability of the findings to real-world scenarios. As for the resolution strategy,
the proposed approach relied on a heuristic algorithm, which struggles with scalability in
large-scale air traffic scenarios. The execution time for these methods further escalates as
air traffic density increases. Furthermore, such conventional approaches to tackle the op-
timization problem lack adaptability, requiring complete recalculation whenever the traffic
scenarios change or new trajectory sets are introduced.

To address these challenges, this chapter advances the framework in the previous chap-
ter in two directions: 1) considering full 3D trajectory optimization (i.e., both lateral and
vertical optimization) to mitigate climate impacts and extending the traffic scenario to the
entire European airspace, and 2) developing a scalable and adaptable algorithm for conflict
mitigation capable of managing large-scale air traffic scenarios.

Meeting the demands of such a large-scale, high-dimensional optimization problem ne-
cessitates a paradigm shift from conventional heuristics toward more scalable and adaptive
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methodologies. In this context, deep reinforcement learning (DRL) offers a promising solu-
tion. By enabling agents to learn optimal behaviors through interaction with their environ-
ment, DRL supports dynamic, data-driven decision-making that can generalize across sce-
narios [141]. The DRL, in particular, has proven effective in decentralized, high-dimensional
control tasks and provides the flexibility required to model the dynamic nature of air traffic
management systems [145]. Importantly, DRL approaches allow for the derivation of opti-
mal policies through offline training, which can then be deployed across varied scenarios
with reduced computational overhead.

Building on these capabilities, this chapter introduces a novel cooperative framework
based on multi-agent DRL for network-scale climate-optimal flight planning. The frame-
work is designed to strategically adjust individually optimized, climate-aware trajectories in
order to enhance overall ATM system manageability by reducing potential conflicts, while
preserving the environmental benefits of the original flight plans. The proposed algorithm,
termed the policy-sharing multi-agent twin-delayed deep deterministic policy gradient (Ps-
MATD3) algorithm, extends the well-established twin-delayed deep deterministic policy
gradient (TD3) algorithm to a multi-agent setting. Each aircraft is modeled as an autonomous
agent operating within a shared environment, and trained with two objectives: 1) to mini-
mize conflicts with other aircraft, and 2) to maintain close adherence to its initial climate-
optimal trajectory.

To overcome the challenge of non-stationarity inherent in multi-agent environments,
fully observable critic networks are employed. These critics have access to the states and
the actions of all agents during training, thereby providing each agent with a stable learning
environment and improving the reliability of the training process. Finally, to ensure adapt-
ability across varying traffic scenarios, the proposed algorithm incorporates a policy-sharing
mechanism, allowing a single trained policy to be deployed across an arbitrary number of
aircraft. This feature enhances the generalizability and scalability of the framework, making
it suitable for large-scale air traffic management applications.

The overall view of the proposed framework in this chapter is illustrated in Figure 4.1.
Initially, flight plans are optimized using the framework presented in Section 4.1 for a real
traffic scenario considering the mitigation of the climate impact induced by non-CO2 forc-
ing agents and operating cost as the flight planning objectives. By adjusting the weight of
climate impact in the objective function, we generate various alternative trajectories, rang-
ing from cost-optimal to climate-optimal routing options. Then, we investigate the effects of
adopting climate-optimized trajectories on traffic complexity in terms of the number of con-
flicts. To mitigate the arisen conflicts, a conflict resolution is proposed using the framework
presented in Section 4.2. The proposed resolution strategy presented in Section 4.3 is then
implemented to drive an optimal policy that takes as input aircraft information and provides
speed modifications to resolve conflicts of climatically optimized trajectories at the planning
phase (Section 4.4).
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FIGURE 4.1: Workflow of the proposed MARL-based framework for climate-aware flight planning
considering conflicts.

The methodology and results presented in this chapter are extracted from the published
work in [30].

4.1 Micro-scale 3D climate-optimal flight planning

This section extends the trajectory optimization framework introduced in Chapter 3 by incor-
porating altitude as an additional decision variable, thereby enabling full three-dimensional
(3D) optimization. Similar to Chapter 3, the optimization problem is formulated within the
framework of optimal control theory. The key components required for this formulation,
such as the aircraft dynamical model, the climate impact estimation method, and the ob-
jective function, remain consistent with those introduced in Chapter 3 (i.e., Section (3.1.1)).
However, to account for the vertical dimension, the aircraft’s dynamical behavior is now
modeled using a three-degree-of-freedom point-mass model as:



ϕ̇

λ̇

ḣ

v̇

ṁ


=



(
v cos γp cos χ + wy

)(
RM(ϕ) + h

)−1(
v cos γp sin χ + wx

)(
(RN(ϕ) + h) cos ϕ

)−1

v sin γp(
T(CT)−D(CL)

)
m−1 − g sin γp

− fc(CT)


,

Latitude, Longitude : ϕ, λ

Altitude, True airspeed : h, v

Mass, Fuel flow : m, fc

Thrust & Drag forces : T, D

Thrust & Lift coefficients : CT , CL

Components of wind : wx, wy

Heading & Path angles : χ, γp

(4.1)
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This extension introduces additional state and control variables to account for altitude
variations. Accordingly, the state and control vectors are defined as follows:

x(t) =
[

φ λ h v m
]T

, u(t) =
[
χ CT γp

]T
.

Incorporating altitude as a variable also necessitates the introduction of altitude-specific con-
straints to ensure compliance with physical limitations and operational requirements. The
complete set of extended constraints is given below:

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

CT,min ≤ CT ≤ CT,max,

M(v) ≤ Mmax,

h ≤ hmax.

(4.2)

In addition to the physical and operational constraints defined above, the trajectory opti-
mization problem is also subject to initial and final boundary conditions:

t(0) = t0,[
φ, λ, h, v, m

]
(0) =

[
φ0, λ0, h0, v0, m0

]
,[

φ, λ, h, v
]
(t f ) =

[
φ f , λ f , h f , v f

]
.

(4.3)

The objective function used in this chapter is identical to that defined in Chapter 3 (Equa-
tion (3.11)), which combines operational cost and climate impact through a weighted sum
(i.e., J = CI . SOC + C . EI . ATR). The solution method also follows the approach introduced
in the previous chapter, i.e., the direct optimal control. All in all, the optimized trajectory for
the flight i-th (i.e., trajectory-level optimization) is obtained as:

Γo
i := (φo

i , λo
i , ho

i , vo
i , to

i , mo
i ).

Having planned the climate-optimal trajectories for individual aircraft through the pre-
sented methodology, we integrate them into network-scale analysis to assess their effects on
the manageability of the ATM system. To address any adverse impacts, resolution strategies
are required aimed at re-stabilizing the ATM system without compromising climate opti-
mality. In this respect, the next section will introduce our proposed framework, specifically
designed to resolve conflicts that arise as a consequence of adopting climate-optimized tra-
jectories.



4.2. Conflict resolution modeling using multi-agent reinforcement learning 67

4.2 Conflict resolution modeling using multi-agent reinforcement
learning

As introduced in the previous chapter, a conflict arises when two aircraft are predicted to
violate a predefined minimum safe distance, either horizontally or vertically. To prevent
such scenarios, a safety buffer is considered around each aircraft, conceptualized as a virtual
protected zone. This zone adheres to specific horizontal and vertical separation standards,
establishing clear spatial safety boundaries. If another aircraft is projected to enter this zone,
a conflict is identified. Resolving such conflicts involves a sequence of interdependent deci-
sions, which can be effectively addressed using multi-agent reinforcement learning (MARL)
approaches [178]. In decentralized settings, the MARL framework is often formalized as a
decentralized partially observable Markov decision process (POMDP), defined by the tuple
⟨N ,S ,A,P , O, γ, R⟩, where:

• N = {1, . . . , N} represents the set of agents (decision makers) within the interactive
environment.

• S denotes the state space. The state s ∈ S encapsulates the current situation of the
environment and can be viewed as the aggregate state of all agents, expressed as s :=
s1 × s2 × . . .× sN .

• O is the observation space. oi is the observation received by agent i, based on the state
s.

• A is the joint action space, described as A := A1 × A2 × ... × AN . It includes all
possible action combinations that agents can execute, where Ai represents the action
set available to the agent i.

• P is the state transition function, P : S × A → ∆(S), determining the probability of
moving from the current state s ∈ S to the next state s′ ∈ S , given the joint action
a ∈ A.

• R : S ×A× S → R is the reward function stated as R := R1 × R2 × ...× RN .

• γ ∈ [0, 1] represents the discount factor. This parameter balances the emphasis be-
tween immediate and long-term rewards. A lower γ leads the agent to prioritize im-
mediate rewards, while a higher γ encourages a focus on long-term benefits. The spe-
cific value of γ is chosen based on the requirements of the application at hand.

At each time step t, agent i receives a local observation oi
t and takes an action ai

t according
to its policy. The joint action of all agents at = (a1

t , . . . , aN
t ) is then applied to the environ-

ment, resulting in the transition of the environment to a new state st+1 ∼ P(·|st, at). Each
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agent receives a reward ri
t. In the cooperative setting, the goal of the agents is to maximize

the expected total reward:

J ≜ E

[
∞

∑
t=0

γtR(st, at)

]
,

In this section, the problem of conflict resolution is formulated as a MARL problem,
where each aircraft in the airspace is considered an agent. Consequently, the airspace,
encompassing all aircraft, is treated as an environment with N decision-makers involved.
Within this framework, every aircraft is tasked with making critical decisions about its flight
profile, aiming to cooperatively avoid conflicts with other aircraft in the airspace. The for-
mulated problem to represent the decision-making processes of the aircraft will be described
in detail in the following.

State space

The state st at time t is constructed by concatenating the local observations from all aircraft:

st =
[
o1

t , · · · , oN
t

]
.

Observation space

The observation of each aircraft is defined based on the required information for decision-
making. At any given time t, for each aircraft operating in the airspace, the observation
encompasses the heading, flight path angle, and current speed of the aircraft. These param-
eters can capture the intentions of the aircraft, thereby facilitating strategic decision-making
within this dynamic environment. Given the multi-agent nature of this environment, which
includes multiple interacting decision-makers, effective communication between aircraft is
vital. This communication informs each aircraft about its surrounding traffic, forming an es-
sential part of its observation representation. To achieve this, the observation of each aircraft
includes information about neighboring aircraft. This information includes their heading,
path angles, speed profiles, and the minimum distance relative to the observing (ownship)
aircraft over the next time interval, i.e., until time step t′ = t + ∆t. Therefore, at time t for
aircraft i, the observation is described as follows:

oi
t = {χi

t, γi
pt, vi

t, Ii,1
t , ..., Ii,m

t }, (4.4)

where χi
t, γi

pt
, and vi

t represent the heading, path angle, and speed of aircraft i at time t,
respectively. The term Ii,m

t details the information of mth neighboring aircraft as:

Ii,m
t = (χm

t , γm
pt

, vm
t , Lht(m, i), Lvt(m, i)). (4.5)
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The parameters Lht(m, i), Lvt(m, i) are the minimum horizontal and vertical distance of air-
craft m to aircraft i in the interval [t, t′], serving as a critical metric to assess proximity and a
key component of the state representation.

Action space

In this study, the modification of aircraft speed profiles is considered as the action space
for agents to mitigate the complexity in terms of potential conflicts. In addition to conflict
resolution, agents are also tasked with maintaining their modified speed profiles as close as
possible to the original climate-optimal trajectories. To support this objective, a continuous
action space is adopted to allow for fine-grained control over speed adjustments. The prefer-
ence for a continuous action space is based on the limitations associated with discrete action
selection, particularly in terms of flexibility and precision in trajectory adjustments. Discrete
actions can lead to deviations from the original, climate-optimized profiles due to their lim-
ited range of options. For instance, an aircraft might resolve a conflict effectively with a small
speed adjustment, possibly only half the maximum value considered in a discrete system.
However, without such intermediate options, an agent might be forced to select a larger, less
optimal adjustment, resulting in an unnecessary deviation from the desired climate-optimal
path. Therefore, for each aircraft i, we define a continuous action space Ai as follows:

Ai = {ζ|ζ ∈ [vmin, vmax]}. (4.6)

At each time step t, the chosen action value ζ by agent i is added to the aircraft’s optimal
speed (determined during the optimization phase) for the interval [t, t′]. Here, vmin and vmax

are the minimum and maximum permissible speed changes, meeting physical and opera-
tional constraints.

Reward function

Modifying an aircraft’s speed results in the transition of the environment to a new state
through complex interactions among various aircraft, providing feedback in the form of a
reward to each agent. In the context of our proposed methodology, the reward function is
designed to fulfill a dual objective: mitigating the potential loss of separation and deviations
from the climate-optimized trajectory. The reward for aircraft i at time t is expressed as:

ri
t = κ · Ci

Ct
+ Ci

Vt
. (4.7)

where κ is a weighting parameter that serves to regulate the relative importance of conflicts
over the speed modifications. Ci

Ct
represents the cost of conflicts and can be quantified as
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follows:

Ci
Ct

=
t′

∑
τ=t

N

∑
j=1,j ̸=i

−cij
τ , cij

τ =

1 if dij
τ < D0 and hij

τ < H0

0 else
(4.8)

Here, dij
τ and hij

τ represent the horizontal and vertical distances between aircraft i and j at
time τ, with D0 and H0 being the respective minimum required separation standards. This
component of the reward function prioritizes the maintenance of safe distances between
aircraft, thereby reducing the likelihood of conflict situations.

Given that deviations from the reference speed can compromise the optimal performance
originally established at the trajectory level, we incorporate a term in the reward function
that penalizes speed adjustments. To address this, our model introduces a negative term
within the reward function, explicitly designed to discourage excessive speed changes as:

Ci
Vt
= −

t′

∑
τ=t

ωi2
τ , ωi

t := (vct
i − vot

i)/(vmax − vmin), (4.9)

where vct
i and vot

i are the modified and the original speed of aircraft i at time t, respectively,
and vmin and vmax are the minimum and maximum allowable speed changes, respectively,
given in Equation 4.6.

This criterion is designed to incentivize agents to prioritize actions that minimize poten-
tial conflicts by maintaining adequate separation distances while also adhering to optimized
trajectories, ensuring the climate optimality of the flight plans.

4.3 Multi-agent deep reinforcement learning

The problem of conflict resolution in air traffic can be modeled as a cooperative game,
where the efforts of individual agents contribute to the overall goal of the system. In recent
years, MARL algorithms have emerged as powerful tools for addressing decision-making
problems modeled as Markov games. Building on this foundation, we develop a MARL
framework based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm,
specifically tailored to address the complexities of the conflict resolution problem.

4.3.1 TD3 algorithm

The TD3 algorithm was originally developed for continuous control tasks in single-agent
reinforcement learning settings. It represents a significant advancement over its predecessor,
the deep deterministic policy gradient (DDPG) method [179], particularly in addressing the
overestimation of Q-values [180].

At its core, DDPG integrates an actor and a critic network. The critic network employs a
parameterized action-value function (Qϑ) to estimate the expected rewards associated with
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the deterministic policy ηθ : S→ A. The actor network selects deterministic actions based on
the current state received from the environment. The critic network evaluates these actions
taken by the actor and provides gradient information to guide the actor in updating its pa-
rameters θ. To stabilize the training, two target networks Q̂ϑ̂ and η̂θ̂ identical to the original
networks, called target critic and target actor, respectively, are created, and their parameters
are periodically updated by copying ϑ and θ from the original networks.

Building upon the foundation laid by DDPG, TD3 introduces several enhancements that
improve its performance [181]. A key improvement in TD3, drawing inspiration from the
double Q-learning approach, is the use of a dual-critic network. This approach reduces the
likelihood of overestimating Q-values, a challenge often encountered in single-critic models
like DDPG [180]. It involves the utilization of two distinct critic networks, Qϑ1 and Qϑ2 , each
paired with a corresponding target network, Q̂ϑ̂1 and Q̂ϑ̂2. This dual-critic structure allows
TD3 to compute two separate action-value estimates for the subsequent state:

Q̂ϑ̂1
(s′, a′) = Q̂ϑ̂1

(s′, η̂θ̂(s
′)),

Q̂ϑ̂2
(s′, a′) = Q̂ϑ̂2

(s′, η̂θ̂(s
′)).

(4.10)

To address the issue of Q-value overestimation, TD3 selects the minimum of these two values
to compute the target Q-value corresponding to the next state action pair:

y = r + γ min
j=1,2

{
Q̂ϑ̂j

(s′, a′)
}

. (4.11)

Here, r denotes the immediate reward for a single step and γ stands for the discount fac-
tor. Subsequently, the minimum is inserted into the Bellman equation to compute the loss
function as:

L(ϑj) = E(s,a,s′,r)

{
(Qϑj(s, a)− y)2

}
, j = 1, 2, (4.12)

where the operator E{·} signifies the mathematical expectation. The parameter ϑ is updated
to minimize the expectation of the loss function concerning the actual and target Q-value
using gradient descent as:

ϑj = ϑj − αc∇ϑj L(ϑj), (4.13)

where αc is the learning rate of the critic and ∇ϑj L(ϑj) is the gradient of loss function calcu-
lated as:

∇ϑj L(ϑj) = E(s,a,s′,r)

{
(Qϑj(s, a)− y)∇ϑj Qϑj(s, a)

}
. (4.14)

Similar to DDPG [141], the objective of the actor network in TD3 is to maximize the Q-
value defined as:

J(θ) = E(s)

{
Qϑ1(s, ηθ(s))

}
. (4.15)
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Accordingly, the parameter θ is updated to maximize the Q value as:

θ = θ + αa∇θ J(θ), (4.16)

where αa is the learning rate of actor network and ∇θ J(θ) computed as:

∇θ J(θ) = E(s)

{
∇θηθ(s)∇aQϑ1(s, a)|a=ηθ(s)

}
. (4.17)

Another strategic modification in TD3 is the implementation of delayed policy updates.
This approach differs from traditional reinforcement learning paradigms by updating the
actor and target networks less frequently. Specifically, it introduces a fixed delay between
these updates. In contrast to conventional methods, TD3 prioritizes more frequent updates
to the critic (Q-value) networks, only adjusting the actor and target networks after this fixed
delay interval. The deliberate delay in actor and target networks updates is designed to
enhance overall stability, mitigate potential divergence issues, and improve the accuracy of
Q-value estimation [180].

To mitigate over-fitting, which can result from discrepancies in estimation and the insta-
bility inherent in deterministic policy methods, it is essential to smooth the evaluation of the
Q-value. This smoothing process involves a balance between minimizing estimation varia-
tions and controlling fluctuations. To achieve this equilibrium, one can incorporate clipped
normal distribution noise into the output actions generated by the target actor network:

a = η̂θ̂(s
′) + σ, σ ∼ clip(Normal(0, ϵ),−c, c). (4.18)

With these insights into the TD3 algorithm, we propose a framework leveraging TD3
within a multi-agent environment. In the subsequent sections, we will delve into the details
of our proposed framework, explaining the adaptation of TD3, its expected benefits, and our
experimental findings, demonstrating its effectiveness in real-world multi-agent scenarios.

4.3.2 Policy-sharing multi-agent TD3 algorithm

In this section, we introduce the policy-sharing multi-agent TD3 (Ps-MATD3) algorithm, an
adaptation of the TD3 framework designed to mitigate the potential conflict in real-world
air traffic scenarios. The proposed framework is tailored for multi-agent cooperative envi-
ronments and can handle an arbitrary number of concurrently operating agents. Within this
framework, each aircraft is considered as an individual TD3 agent operating within a shared
environment. To address the challenge of scalability in multi-agent systems, a crucial aspect
in scenarios involving hundreds or thousands of agents, we propose a unique policy shared
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across all agents. This shared policy approach not only enhances scalability but also sim-
plifies the computational complexity typically encountered in optimizing policies for thou-
sands of agents. Moreover, policy sharing facilitates deployment in dynamic environments
with a variable number of agents, ensuring consistent and coordinated decision-making re-
gardless of system scale.

Delving into the mechanism of the Ps-MATD3 algorithm, we consider that each agent i
in the multi-agent system utilizes two centralized critic networks, Qi

ϑ1
, and Qi

ϑ2
, which are

parameterized by ϑ1 and ϑ2, respectively. The critic networks are paired with corresponding
target networks Q̂i

ϑ̂1
, andQ̂i

ϑ̂2
. In addition, the Ps-MATD3 algorithm incorporates a shared

actor network, denoted as ηθ , parameterized by θ. The shared policy η facilitates a uni-
fied approach in decision-making, ensuring that each agent, despite operating individually,
aligns with the collective objective of the system. Furthermore, we introduce a target actor
network η̂θ̂ , with the parameters of the target actor and target critics networks being period-
ically updated by copying parameters from the original networks.

At each time step t, for the agent i ∈ [1, 2, ..., N], the observation oi
t is input to the actor

network to generate action ai
t = ηθ(oi

t). The actions generated by all agents are applied to the
environment, resulting in the transition to new states and obtaining feedback rewards. These
transitions are stored in a reply buffer Ξ as tuple (O, Λ, O′, R), where O : {o1, o2, ..., oN},
Λ : {a1, a2, ..., aN}, O′ : {o′1, o′2, ..., o′N}, R : {r1, r2, ..., rN} represent the states, actions, next
states and obtained rewards of all agents, respectively. Once one episode is done (i.e., all
agents approach their terminal states), for each agent, the networks are trained using Nbatch

samples of Ξ.
However, one challenge in training networks is the non-stationarity of the environment

[152]. In multi-agent systems, the actions taken by one agent not only affect its rewards but
also influence the rewards and state dynamics experienced by other agents [182]. This causes
instability in learning as it violates the stationary assumption required for the convergence of
single-agent reinforcement learning algorithms. The assumption states that the environment
follows a stationary Markovian property if the reward and current state depend solely on
the previous state and action [182]. To mitigate this issue, fully observable critic networks
are employed, wherein the critic is provided with access to the state and joint actions of
all agents. Thus, the environment is stationary from the perspective of each agent. Even
if the policy of agents changes during the training (i.e., πk ̸= π′k ), the environment is still
stationary since, regardless of the change in the policy of others, the environment returns the
same state as:

P(s′|s, a1, a2, ..., aN , π1, π2, ..., πN) = P(s′|s, a1, a2, ..., aN , π′1, π′2, ..., π′N). (4.19)
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Suppose that the tuple (O, Λ, O′, R) is one sample from Ξ. Each agent updates the pa-
rameters of its centralized critic networks as

ϑi
j = ϑi

j − αc∇ϑi
j
L(ϑi

j), j = 1, 2. (4.20)

Here, L(ϑi
j) represents the critic loss function, which is to be minimized. This function is

defined as follows:

L(ϑi
j) = E(O,Λ,O′,R)∼Ξ

{
(Qi

j(O, a1, a2, ..., aN)− yi)2
}

, (4.21)

where Qj(O, Λ) is the predicted value of the j critic network, and yi is the target value ob-
tained using:

yi = ri + λ min
j=1,2

{
Q̂i

j

(
o′1, o′2, ..., o′N , η̂θ̂(o

′1) + σ, η̂θ̂(o
′2) + σ, ..., η̂θ̂(o

′N) + σ
)}

. (4.22)

In Equation (4.22), η̂θ̂(o
′i) + σ is the predicted action by target actor for agent i with a gaus-

sian noise σ ∼ clip(Normal(0, ϵ),−c, c) that is clipped and added for policy smoothing, and
Q̂i

j(o
′1, ..., o′N , η̂θ̂(o

′1) + σ, ..., η̂θ̂(o
′N) + σ) is the Q-value predicted by target critic j.

Once the parameters of the critic networks are updated, the parameters of the actor net-
work are updated as follows:

θ = θ + αa∇θ J(θ), (4.23)

where ∇θ J(θ) is the gradient of the expected return computed as:

∇θ J(ηθ) = E(O,Λ)

{
∇θηθ(oi)∇ai Q

i
1(O, a1, a2, ..., aN)|ai=ηθ(oi)

}
, (4.24)

After training, the parameters of the critic target networks are updated with a fixed delay
for all agents as follows:

ϑ̂j
i ← α̂cϑi

j + (1− α̂c)ϑ̂
i
j, (4.25)

where α̂c is the learning rate for critic targets. Finally, the parameters of the shared actor
target are periodically updated after a predefined number of iterations as:

θ̂ ← α̂aθ + (1− α̂a)θ̂, (4.26)

where α̂a is the learning rate for the actor target. Once the training process is done, the
trained critic networks are removed. Then, at each time step t, only the local observation
of the agent i is required to be input into the trained actor model η∗ to obtain the optimal
action ai

t = η∗(oi
t). The algorithm showing the training process based on the presented steps

is demonstrated in Algorithm 2.
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Algorithm 2 Ps-MATD3 algorithm.

Initialize the environment
Initialize the replay buffer Ξ
Initialize the actor network parameterized by θ
Initialize the actor target parameterized by θ̂
for agent i, i = 1, ..., N do

Initialize the critic networks parameterized by ϑi
1 and ϑi

2

Initialize the critic targets parameterized by ϑ̂1
i

and ϑ̂2
i

end for
for s = 1 to Smax do

Reset the environment
for time step = 0 to tmax do

Receive the current observation of all agents [o1
t , ..., oN

t ]
Select actions ai

t for i = 1, ..., N:

ai
t = ηθ(oi

t) + σ, σ ∼ Normal(0, ϵ)

Execute joint action at = a1
t , ..., aN

t in the environment.
Update the environment and get new observations [o′t

1, ..., o′t
N ] and reward rt

Store transition (st, at, rt, s′t) in Ξ
end for
Randomly sample a mini-batch of l samples
for agent i, i = 1, ..., N do

Compute target action for agent i:

a′i = η̂θ̂(o
′i) + σ, σ ∼ clip(Normal(0, ϵ),−c, c)

Compute yi according to Equation (4.22)
Update ϑ1, ϑ2 using Equation (4.20)

end for
if s mod τ = 0 then

Update θ using Equation (4.23)
Update ϑ̂ and θ̂j from Equation (4.25) and Equation (4.26)

end if
end for



76 Chapter 4. Network-scale climate-optimized flight planning: Conflict resolution using MARL

4.3.3 Computational complexity analysis of Ps-MATD3

The complexity of the proposed Ps-MATD3 algorithm is analyzed in terms of computational
and space complexity. This analysis is divided into two stages: the training phase and the
execution phase.

Computational complexity: The computational complexity during the training phase
primarily arises from two components: updating the critic networks and updating the actor
network. To update the critic networks, each agent requires the target actions of all N agents.
Specifically, for each of the N agents, we compute the actions of all N agents, resulting in a
computational complexity ofO(N2 × na), where na is the number of parameters in the actor
network. Next, we need to calculate the Q-values based on the joint actions and observations
of all agents. Each agent has two critic networks, as per the TD3 architecture, but the factor of
two does not affect the order of complexity. Thus, the computational complexity of updating
all critic networks isO(N × nc), where nc represents the number of parameters in each critic
network.

Second, for the actor network update, Ps-MATD3 requires updating only one shared ac-
tor network, with gradients computed from the critic networks of all N agents. Therefore,
the total complexity for the actor update phase is O(na + N × nc), which includes the com-
plexity of updating the actor network parameters O(na) and computing gradients from the
N critic networks O(N × nc). Thus, the overall computational complexity per training step
for Ps-MATD3 is:

O(N2 × na + N × nc).

The primary difference between Ps-MATD3 and standard MATD3 in terms of computa-
tional complexity lies in the actor update phase. In standard MATD3, each of the N agents
updates its own actor network, resulting in a complexity ofO(N × na + N × nc). Ps-MATD3
reduces this complexity by utilizing a single shared actor network for all agents, lowering
the actor update complexity to O(na + N × nc). However, despite this reduction, the total
computational complexity for both Ps-MATD3 and standard MATD3 is dominated by the
term O(N2 × na), due to the necessity of computing the target actions for all agents during
the critic updates. Consequently, the overall complexity of both algorithms for the training
phase remains of the same order:

O(N2).

The computational complexity in the execution phase of Ps-MATD3 is similar to MATD3,
where each agent independently selects its action, resulting in a computational complexity
of:

O(N × na).

Space Complexity: Each agent in Ps-MATD3 has two critic networks, resulting in a
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space requirement of O(N × nc) for the critics. Since there is only one shared actor net-
work, the space required for the actor network isO(na). Thus, the total space complexity for
Ps-MATD3 is:

O(N × nc + na).

In contrast, standard MATD3 requiresO(N × na) space for the actor networks, as each agent
has its own actor network. Therefore, the total space complexity for standard MATD3 is
O(N × nc + N × na).

During the execution phase of Ps-MATD3, only the actor network is required, resulting
in a space complexity of O(na). By comparison, MATD3 requires each agent to have its own
actor network, leading to a higher space complexity of O(N × na).

4.4 Simulation results

This section presents a case study to demonstrate the effectiveness of the proposed method-
ology. The components of the simulation framework are outlined, including the experimen-
tal setup, scenario definition, neural network architecture, parameters used for trajectory
planning and conflict resolution, and the results obtained.

4.4.1 Experimental details

This experiment employs a real large-scale scenario representing the traffic on December
20, 2018, within the European Civil Aviation Conference (ECAC) airspace. The analysis
focuses specifically on flights operating between 12:00 and 14:00 UTC. Flight data, including
boundary conditions required for aircraft trajectory optimization (e.g., initial flight time and
coordination of initial and final waypoints), is extracted from the DDR2 dataset1. In cases
where flights depart or arrive outside the ECAC airspace, only the flight segments within
this airspace during the specified time frame are considered.

The weather information necessary for the proposed optimizations (i.e., trajectory plan-
ning and conflict resolution using Ps-MATD3), including wind, temperature, humidity, radi-
ation, potential vorticity, and geopotential, is obtained from the ERA5 reanalysis data prod-
ucts. These data are publicly available at the Copernicus Data Store and offer a resolution of
0.5◦ × 0.5◦ with a temporal granularity of three hours (for the ensemble data).

The flight plans are optimized using the methodology presented in Section 4.1, with
weighting parameters in the objective function Equation (3.11) set to C = 1010 [USD/K],
Ct = 0.75, and C f = 0.51. The Trapezoidal rule is applied to convert the formulated optimal
control problem into an NLP problem. Subsequently, the NLP problem is solved using the
interior-point method by employing the IPOPT solver in Python.

1https://www.eurocontrol.int/ddr

https://www.eurocontrol.int/ddr
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A range of routing options is generated by varying the parameter penalizing climate
effects (EI ∈ [0.0, 0.001, 0.01, 0.1, 1.0, 10.0]) in Equation (3.11), ranging from cost-optimized
(EI = 0.0) to climate-optimized routes (EI = 10).

We implemented the Ps-MATD3 algorithm for the conflict resolution problem with con-
tinuous action spaces. The algorithm is applied in a custom environment where each aircraft
is considered as an agent, and the airspace encompassing all agents is the MARL environ-
ment. A single actor network is shared among all agents. This actor network is responsible
for generating the actions for each agent based on its local observations. The actor network is
configured as a fully connected neural network comprising three layers. These layers consist
of 300, 200, and 80 nodes, respectively. The design of the input layer is specifically tailored to
align with the observation dimension of each agent. For the output of the actor network, we
employ a tangent activation function, which generates a one-dimensional continuous value
for speed adjustment.

Each agent has two critic networks to estimate the Q-values of state-action pairs. These
networks are structured as fully connected neural networks, each containing two hidden
layers with 80 nodes. As the proposed Ps-MATD3 algorithm utilizes fully observable critic
networks to avoid non-stationarity during training, critic networks take the joint actions and
observations of all agents. The critics follow the clipped double Q-learning strategy, where
the minimum Q-value between two critics is used to reduce overestimation bias. The ReLU
activation function is applied to all hidden layers, and the outputs of the critics employ lin-
ear activation functions. To enhance the stability of the training process, target networks,
identical to the original actor and critics, are created, with their parameters periodically up-
dated from the original networks. The Adam optimizer is utilized for both actor and critic
loss functions.

A centralized replay buffer is implemented to store agents’ experiences in the form of
(state, action, reward, next state) tuples. The replay buffer size is set to 106. Experiences are
sampled from this buffer during training to update the networks. To encourage exploration
during training, Gaussian noise with a standard deviation of 5.0 is added to the output of the
action by the actor network. The standard deviation of the noise is decayed over time to al-
low for more stable policies as training progresses. Additionally, noise is added to the target
action during the critic update, and this noise is clipped to the range [-5, 5] to prevent ex-
cessive deviations and ensure smoother value updates. After every step, the critic networks
are updated using the mean squared error between the predicted Q-values and the target
Q-values, which are computed using the target networks. The actor network is updated
less frequently (every two critic updates), following the delayed policy update strategy from
TD3. Both the actor and critic networks use target networks, which are updated using a soft
update factor 10−3. A detailed summary of the hyperparameters used in the training process
is provided in Table 4.1.



4.4. Simulation results 79

TABLE 4.1: The set of training parameters and their values.

Parameter Value

Time step (∆t) 600 s
Discount factor for future rewards (γ) 0.95
Learning rate of updating target networks (α̂a, α̂c) 10−2

Size of mini-batch (Nbatch) 20
Exploration noise std (σ) 5.0
Maximum time step in each episode 13
Learning rate of actor network (αa) 10−3

Learning rate of critic networks (αc) 10−3

To train the proposed Ps-MATD3 algorithm, we select the trajectories associated with
EI = 0.0 (i.e., cost-optimal trajectories). These trajectories serve as the baseline, represent-
ing standard flight paths, and provide a reference point for our algorithm’s training process.
Within the proposed framework, aircraft not part of any conflict maintain their original flight
profiles, thereby assigning the responsibility of conflict resolution exclusively to the aircraft
directly involved in the conflict. This is because allowing all aircraft to modify their profiles
can significantly increase the complexity of the problem. Furthermore, from the operational
perspective, it is preferable for aircraft not engaged in conflicts to adhere to their predeter-
mined optimal flight plans to maintain overall system efficiency and stability. This approach
ensures that the algorithm focuses on conflict resolution where it is most needed while min-
imizing unnecessary adjustments to non-conflicting aircraft.

Each agent’s state includes its current position (i.e., latitude, longitude, altitude), velocity,
heading angle, and the relative positions and velocities of nearby aircraft within a radius of
25 nautical miles (NM) and a height of 3000 feet (ft). At each time step ∆t = 10 minutes,
agents receive their state and take actions in the range vmin = −30 knots to vmax = 30 knots.
The selected action is applied uniformly to all segments of the trajectory during the time
step. For instance, if an agent chooses to increase its speed, the selected action is added to the
current speed at that interval, and the entire flight profile is updated to reflect the new speed.
Accordingly, all information related to the trajectory, such as data on neighboring aircraft,
is updated. Once all agents select their actions, the environment is updated, and conflicts
between aircraft are computed. The separation criterion for having a conflict is defined as
a horizontal distance of D0 = 5 NM and a vertical distance of H0 = 1000 ft, consistent
with the definition used in Chapter 3. Therefore, any pair of aircraft that is predicted to
violate this separation receives a penalty of -1 (negative reward). The total penalty for each
agent increases based on the number of potential conflicts with other agents. Additionally, a
negative reward proportional to the magnitude of the speed change is applied to discourage
unnecessary deviations from the original trajectory. Specifically, the penalty is calculated
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EI = 0.0

EI = 10.0EI = 1.0

EI = 0.001 EI = 0.01

EI = 0.1

FIGURE 4.2: Lateral routes of optimized trajectories associated with different EI’s.

using Equation (4.9). The parameter κ in Equation (4.7) is set to 0.58, determined through
the tuning process to balance effective conflict resolution with minimal trajectory deviation.

4.4.2 Climate-optimal flight planning

To assess the impact of climate considerations on flight trajectories, we generate six sets of
alternative trajectories. Each set is associated with a specific EI value, covering a range from
cost-optimized trajectories to trajectories with an increased level of climate optimality. After
optimizing flight plans, they are integrated into the ATM system for performance evaluation.
The optimized lateral paths for different routing options (i.e., different EI values) are shown
in Figure 4.2. The figure highlights the impact of varying EI values on the traffic pattern.
It can be seen that for lower EI values, the distribution of traffic flow is relatively uniform
across the airspace. However, as EI values increase, a noticeable concentration of traffic flow
emerges in specific areas.

Figure 4.3 illustrates the climate impact of the optimized trajectories, evaluated both in
terms of the net climate effect and the contributions of individual species. The results show
that increasing EI leads to a decrease in the net ATR. Notably, optimizing flight trajectories
can contribute to more than just mitigating warming effects; it also causes cooling effects
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FIGURE 4.3: Climate effects associated with individual species for different sets of optimized trajec-
tories.

(i.e., EI ∈ [1.0, 10.0]). This outcome arises from forming cooling contrails while simulta-
neously minimizing the generation of warming contrails (see Aviation-Induced Cloudiness
(AIC) in Figure 4.3). Such behavior is in line with related studies employing aCCFs, stating
the climate impact mitigation potential is generally achieved through reducing the impact
of contrails (see [183]). Figure 4.4 shows the geographical distribution of formed persistent
contrails for different sets of flight trajectories. It is evident that trajectories associated with
higher EI values generate more cooling contrails while simultaneously reducing the forma-
tion of warming contrails. One can see in Figure 4.2 that locations where the traffic density
is increased match the areas where cooling contrails are formed (refer to Figure 4.4). In-
deed, these specific areas have a heightened potential for cooling contrail formation, leading
aircraft to fly through these regions.

While trajectory planning offers opportunities to reduce aviation’s climate impact (as
shown in Figure 4.3), it is also crucial to evaluate its effects on other performance metrics. In
particular, in this chapter, we focus on the operational cost and potential conflicts. To assess
the operational cost, we utilize the SOC, which is calculated using a weighted sum of flight
time and fuel consumption (given in Equation (3.11)). The results are detailed in Figure 4.5.
The findings indicate that adopting flight trajectories with lower climate impact increases
operating costs. This trend is due to the behavior of aircraft in response to different climate
conditions: they tend to avoid areas contributing to warming effects while seeking to cross
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FIGURE 4.4: Geographical distribution of persistent warming and cooling contrails across various
sets of optimized flight plans. Formed warming contrails are indicated in red, while cooling contrails

are depicted in blue.

regions conducive to cooling impacts. While these optimized flight plans are effective for
climate mitigation, they generally result in longer routes, thus increasing operational costs.

In addition to the operating cost, the traffic concentration within/around climate hotspots
increases traffic complexity. The congestion arises as multiple aircraft fly through the areas
with high potential to form cooling and less warming contrails, resulting in proximity and
potential conflicts between flights (see Figure 4.5). A comparison of different trajectory sets
reveals that adopting trajectories with lower climate impacts is associated with an increase
in the number of potential conflicts.

The locations of conflicts for different sets of trajectories are illustrated in Figure 4.9, pro-
viding a visual understanding of areas where climate-optimized trajectories potentially com-
promise air traffic manageability. Notably, Figure 4.9 illustrates an increase in the number of
potential conflicts at lower altitudes for trajectories with higher climate impact mitigation.
One justification for this behavior is the possibility of generating cooling contrails at lower
flight levels for this scenario. As a result, these specific flight levels experience an increase in
traffic flow, leading to a rise in potential conflicts.
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FIGURE 4.5: Operating cost and number of potential conflicts for different sets of optimized flight
plans (different EI’s).

4.4.3 Mitigating potential conflicts using Ps-MATD3

The results indicate that efforts to mitigate climate impact through trajectory optimization
lead to increased traffic concentration in specific regions. This redistribution of traffic flow
contributes to a heightened number of potential conflicts, which may compromise the oper-
ational feasibility of the optimized flight plans. Addressing this challenge, it is imperative to
strategically (i.e., at the planning phase) manage traffic complexity. To this end, we employ
the method detailed in Section 4.3 to resolve the encountered conflicts, ensuring the feasibil-
ity of climate-optimal trajectories. Our objective is to create a balance between the climate
benefits achieved through trajectory optimization and the operational requirements of the
ATM system.

The MARL environment is structured according to the state space, action space, and re-
ward function presented in Section 4.2. The proposed Ps-MATD3 is compared against three
algorithms: the original MATD3, multi-agent deep deterministic policy gradient (MAD-
DPG), and policy-sharing MADDPG (Ps-MADDPG). Figure 4.6 illustrates the reward per-
formance of these four algorithms, where the vertical axis represents the obtained rewards,
and the curves are averaged over 10000 episodes.

As shown in Figure 4.6, Ps-MATD3 achieves consistently higher rewards compared to the
other methods. When compared with the original MATD3, which does not employ policy
sharing, Ps-MATD3 consistently outperforms MATD3 in terms of total reward. This im-
provement can be attributed to the ability of policy sharing in Ps-MATD3, which accelerates
learning by enabling agents to benefit from shared experiences.
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FIGURE 4.6: Comparison of reward performance across four multi-agent reinforcement learning al-
gorithms: Ps-MATD3, MATD3, Ps-MADDPG, and MADDPG. Each point corresponds to the mean

reward over 10,000 episodes, and shaded regions show the standard deviation.

Ps-MATD3 demonstrates stable reward curves, likely due to the twin-critic structure and
delayed policy updates of the TD3 algorithm, which help stabilize the learning process. In
contrast, Ps-MADDPG, while competitive in terms of reward, exhibits higher fluctuations
in its reward curve. Finally, the original MADDPG algorithm shows comparatively inferior
performance in terms of rewards and exhibits high variability in the learning curve. All in all,
the results indicate that the policy-sharing mechanism (i.e., Ps-MATD3 and Ps-MADDPG)
improves performance and enhances the stability of learning compared to their counterparts
that do not utilize policy-sharing.

Table 4.2 summarizes the performance metrics of the proposed Ps-MATD3 algorithm
compared to other methods. The results demonstrate that Ps-MATD3 converges faster to
higher rewards, achieving an optimal performance after approximately 110k episodes. In
contrast, MATD3 requires more training steps (around 350k episodes) to converge and still
fails to reach the same reward level as Ps-MATD3. This faster convergence reduces compu-
tational complexity, as fewer iterations are needed to achieve optimal performance. Addi-
tionally, Ps-MATD3 has a shorter training time per episode (0.24 seconds vs. 0.26 seconds for
MATD3), further decreasing the computational burden. This reduction is attributed to the
policy-sharing mechanism, which decreases the number of networks that need to be trained,
streamlining the learning process.

When comparing Ps-MATD3 to MADDPG and Ps-MADDPG, it is evident that Ps-MATD3
outperforms both in terms of stability and reward performance. Although Ps-MADDPG
demonstrates improvement in training times per episode, it requires more iterations to achieve
the same level of stability and reward as Ps-MATD3. Consequently, despite the shorter per-
episode training time, the overall time to converge is longer for Ps-MADDPG. MADDPG,
without policy sharing, experiences slower convergence and lower reward levels, indicating
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TABLE 4.2: Performance comparison of the Ps-MATD3 algorithm with MATD3, MADDPG, and Ps-
MADDPG.

Convergence pint
(Episode)

Training time per episode
(s)

Final reward

Ps-MATD3 ∼ 110k 0.24 -19
MATD3 ∼ 350k 0.26 -41
Ps-MADDPG ∼ 290k 0.19 -19
MADDPG ∼ 210k 0.21 -72

that policy sharing contributes to both enhanced learning efficiency and reduced computa-
tional complexity.

(A) Relative differences of the number of potential
conflicts from cost-optimal trajectories (EI = 0.0) for

different sets of climate-optimized trajectories.

(B) Relative differences of climate impact from
cost-optimal trajectories (EI = 0.0) for different

sets of climate-optimized trajectories.

(C) Relative differences of the operating cost from
cost-optimal trajectories (EI = 0.0) for different

sets of climate-optimized trajectories.

FIGURE 4.7: Comparison between the climate impact, operating cost, and number of conflicts before
and after applying the proposed resolution methodology.

The policies derived from PS-MATD3 are tested across different sets of climate-optimal
trajectories, i.e., EI ∈ [0.001, 0.01, 0.1, 1.0, 10.0], to modify the speeds of conflicting aircraft.
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FIGURE 4.8: Percentage of flights subject to speed adjustment (speed up, slow down, and total mod-
ifications) after implementing conflict mitigation strategies for different sets of climate-optimized

flight plans.

For each aircraft in conflict, the speed profile is modified according to the action suggested
by the agent at each time step, and the flight trajectory is updated based on the new velocity
profiles. Subsequently, we reassess the performance of the modified flight plans in terms of
ATR, SOC, and the number of conflicts to analyze the effectiveness of the proposed conflict
resolution strategy.

A comparative analysis of flight performance, assessed before and after the implemen-
tation of the resolution strategy, is presented in Figure 4.7. This figure highlights the dif-
ferences in potential conflicts, ATR, and SOC compared to cost-optimal trajectories as the
reference. The findings reveal that the policy developed through this study reduces traf-
fic complexity in all cases. For most sets of optimized flight plans, it successfully lowers the
number of conflicts to levels close to or even below those encountered in scenarios with cost-
optimal trajectories. However, as indicated in Figure 4.7, achieving this conflict reduction is
associated with increased operational costs, which rise by less than 1.5% in all scenarios. Ad-
ditionally, there is a compromise in climate impact mitigation, decreasing by a maximum of
5% over all sets of flight plans. Such a trade-off is expected as we deviate from the optimized
routes determined in the trajectory optimization phase.

All in all, the presented results indicate that the proposed conflict-resolution strategy
contributes to improving the balance of the ATM system by enhancing manageability, albeit
with a slight compromise in operating cost and climate performance.

Figure 4.10 illustrates the conflict locations following the implementation of the proposed
strategy, indicating a substantial reduction in traffic conflicts, especially in high-density areas
(i.e., areas where cooling contrails are formed in Figure 4.4). This decrease in potential con-
flicts demonstrates the strategy’s efficiency in improving overall traffic manageability. The
percentage of flights that adjusted their speed to minimize conflict occurrences is illustrated
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in Figure 4.8. This analysis shows a clear trend: with an increase in EI value, the percentage
of modified flights also increases. This indicates that trajectories with lower climate impact
require more modifications to re-stabilize the ATM system.

FIGURE 4.9: Locations of potential conflicts for different sets of optimized trajectories pre-resolution
implementation: red circles indicate potential loss of separation between aircraft, increasing as tra-

jectories with lower climate impact are adopted.
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FIGURE 4.10: Locations of potential conflicts for different sets of optimized trajectories post-
resolution implementation. Red circles indicate potential loss of separation between aircraft.

4.5 Summary

This chapter presented a cooperative decision-making framework employing MARL to plan
operationally feasible climate-friendly routes from the perspective of the ATM system. The
proposed strategy leveraged the TD3 algorithm to adjust flight trajectories during the plan-
ning phase to resolve the potential conflicts associated with climate-optimal trajectories.
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The performance of the framework was evaluated using a real-world traffic scenario over
the ECAC airspace. A set of alternative trajectories, spanning from cost-optimal to climate-
optimal routing options, was generated using a micro-scale trajectory optimization approach.
The results indicated that the climate benefits reported from individual trajectory optimiza-
tion approaches might not be fully achievable in practice due to their potential impact on
ATM system performance, particularly through an increased number of conflicts. For in-
stance, achieving an 85% reduction in climate impact was associated with a 50% increase in
the number of conflicts.

To address this challenge, the Ps-MATD3 algorithm was introduced as a resolution strat-
egy aimed at balancing environmental objectives with traffic complexity. Although not all
conflicts were resolved, mainly due to the limited action space, the proposed approach
demonstrated the potential to improve traffic manageability by reducing the number of pre-
dicted conflicts. Restricting decision space to only speed changes, up to 80% climate impact
reduction was achievable while decreasing potential conflicts by 10% compared to standard
business-as-usual trajectories.

One of the key findings of this study is the advantage of policy sharing between agents.
Sharing policy parameters across aircraft improves the learning process by enabling more
efficient use of data, as agents benefit from collective experience, reducing the time and
computational resources required for convergence. Another advantage of policy sharing is
that it allows training in smaller traffic scenarios while still being applicable to larger, more
complex environments. This is possible because conflict resolution typically depends on
interactions with neighboring aircraft, making the shared policy effective regardless of the
overall size of the scenario. Without policy sharing, training policies on smaller subsets may
not generalize well to larger scenarios. In such cases, scaling these individually trained poli-
cies to handle a significantly larger number of agents becomes unclear, and the entire system
may require retraining. Shared policies avoid this issue by being adaptable, regardless of the
number of agents in the environment.
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Chapter 5

Network-scale climate-optimized
flight planning in structured airspace:
Multi-agent RL approach for
complexity management

The previous chapter introduced a sequential framework for network-scale climate-optimal
flight planning within fully free-routing airspace. While the proposed method demonstrated
potential in balancing environmental benefits with operational feasibility, measured in terms
of conflict reduction, it might reveal limitations from the operational perspective. In partic-
ular, relying on the number of conflicts as a proxy for air traffic manageability during the
planning phase may be insufficient, as conflicts are typically assessed over short time hori-
zons and depend on precise trajectory information, which is inherently uncertain at this
stage. To enable a more robust evaluation, it is essential to incorporate performance indi-
cators that operate over longer time horizons and are more closely aligned with the charac-
teristics of trajectory-based operations. Moreover, to assess the real-world applicability of
climate-aware flight planning, it is necessary to move beyond the context of futuristic fully
free-routing scenarios and consider the constraints imposed by current structured airspace.

Motivated by these needs, this chapter introduces a MARL framework for network-scale
climate-optimal flight planning within the constraints of current structured airspace, using
air traffic complexity as the primary performance metric to evaluate air traffic manageability.
Building upon the sequential optimization framework presented in the previous chapters,
the proposed approach follows a similar multi-step structure (see Figure 5.1). First, indi-
vidual trajectories are optimized to mitigate the climate effects. Next, the collective perfor-
mance of these optimized trajectories is evaluated in terms of air traffic complexity. Finally,
to address the unintended increase in complexity that arises from adopting independently
optimized trajectories, we introduce a cooperative resolution strategy based on Multi-Agent
Proximal Policy Optimization (MAPPO).
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FIGURE 5.1: Workflow of the proposed MARL-based framework for climate-aware flight planning
considering traffic complexity.
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The resolution problem is formulated as a decision-making process in which each aircraft
adjusts its speed and altitude profiles to mitigate traffic complexity while preserving climate
benefits. Similar to the previous chapter, the proposed framework follows a centralized
learning and decentralized execution scheme. In this setup, the policy is trained in a cen-
tralized manner, but during execution, each aircraft applies the policy independently based
on the available information. To ensure scalability in scenarios involving varying numbers
of agents, shared policy parameters are implemented, providing flexibility to accommodate
diverse air traffic conditions and ensuring the framework can adapt to dynamic operational
environments.

The remainder of this chapter is organized as follows. Section 5.1 introduces the micro-
scale trajectory optimization framework within structured airspace. Section 5.2 outlines
the methodology used to evaluate air traffic complexity. Section 5.3 presents the decision-
making strategy to mitigate the increased complexity associated with climate-optimized
routes. Finally, section 5.4 details the simulation setup, including scenario definitions and
the configuration of the optimization tool, and presents and discusses the findings of this
study.

We note that the content in this chapter is mainly extracted from papers [28] and [31].

5.1 Micro-scale trajectory optimization within structured airspace

The trajectory planning approach outlined in the previous chapters assumes that the lat-
eral routes and altitude profiles of the aircraft can be freely determined between predefined
departure and arrival points to minimize a given objective function. While this framework
aligns with the flexibility envisioned in future fully free-routing airspace, it does not fully re-
flect the constraints imposed by current operational practices. In reality, aircraft must follow
structured route networks and operate at designated flight levels, which restricts trajectory
planning flexibility.

Transitioning from free routing to structured airspace introduces a fundamental shift in
the optimization formulation. Specifically, decision variables in the problem shift from a con-
tinuous decision space to a hybrid decision space comprising both continuous and discrete
variables. This shift significantly increases the complexity of the problem, placing it within
the domain of mixed-integer nonlinear programming (MINLP). To tackle this optimization
problem more efficiently, instead of optimizing a sequence of control inputs (uo), we directly
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optimize the flight plan, defined as F : {M, R, FL, C, D, dD} [27], where

M : Mach schedule

R : Lateral path

FL : Flight level of the cruise phase

C : Climb profile

D : Descent profile

dD : Distance-to-go to the destination node.

The direct optimization of flight plans, rather than control and state variables, enables more
efficient handling of structured airspace constraints. This is achieved by directly searching
over admissible flight plan variables that comply with the air traffic services (ATS) route net-
work, rather than imposing these requirements as path constraints, which would otherwise
lead to a more complex optimization problem. The goal is to determine a flight plan that
minimizes the following objective function, which includes both operating cost and ATR,
while satisfying the aircraft dynamical model (i.e., Equation 4.1) and complying with the
underlying constraints, such as those imposed by structured airspace and the flight enve-
lope:

J(F) = CI ·
[

Ct ·E{FT}+ C f ·E{FB}
]
+ EI ·C ·E{ATR}. (5.1)

Here, FT is the flight time, and FB is the fuel consumption, and Ct, C f , CI, and EI are con-
stant parameters weighting flight time, consumed fuel, operating cost, and climate effects,
respectively, and C adjusts the order of climate impact with cost. The expectation over flight
performance variables is used to capture the effects of meteorological uncertainty on aircraft
dynamical behavior and climate impact estimates, which are quantified using ensemble pre-
diction weather forecasts [22].

To evaluate the objective function defined in Equation (5.1), we need to calculate flight
time, fuel consumption, and ATR. In this respect, the dynamical model given in Equation
(4.1) needs to be integrated for a given flight plan (F), a set of meteorological variables (W),
and initial time and mass (t0, m0), denoted with TI(·). By performing trajectory integration,
we can compute performance variables of interest:[

E
{

FT
}

, E
{

FB
}

, E
{

ATR
}]

= E

{
TI(F, W, t0, m0)

}
, (5.2)

allowing for evaluating the performance of a flight plan with the objective function given in
Equation (5.1). Due to the discrete distribution of meteorological uncertainty characterized
by EPS, the expectation operators in Equation (5.2) can be calculated with the simple average
of different trajectory integrations, each corresponding to one member of EPS and sampled
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initial flight time and initial fuel burn, with equal weights.

Trajectory optimization tool

The robust climate-optimal flight planning problem is solved using the recently developed
tool ROOST, which is appropriate for the current structured airspace and capable of optimiz-
ing flight plans, taking into account meteorological uncertainty and uncertainty correspond-
ing to the initial flight conditions. ROOST employs a heuristic algorithm called augmented
random search as the optimization method, and due to parallelization on GPUs, it delivers
the optimized robust flight plan in seconds. This library is publicly available and can be
accessed using DOI: https://doi.org/10.5281/zenodo.7495472.

It is important to point out that the optimization problem formulated and presented in
this chapter involves a combination of both discrete and continuous decision variables, i.e.,
resulting in a MINLP problem. This is an NP-hard problem class, and the associated the-
oretical difficulties are indeed borne out in practice: both the mathematical programming
approaches to MINLP and metaheuristics are considered fairly computationally expensive.
To cope with such a complex optimization problem efficiently, ROOST adopts the method
proposed in [27], which defines a continuous search space over probability distributions of
flight plans, rather than searching directly for a single optimal trajectory. In the context of
this work, this formulation results in an optimization problem with hundreds of variables,
depending on the size of the selected airspace subgraph and the discretization of Mach num-
ber and flight level values.

After performing optimization with ROOST for individual flights, we will receive N op-
timized flight plans. We denote the optimized flight plan for aircraft i as:

Fio
= (Rio

, FLio

, Mio

, Cio
, Dio

, dio

D).

5.2 Air traffic complexity evaluation

Accounting for network effects and operational requirements is crucial when planning climate-
optimized trajectories for individual flights in order to ensure feasibility and enhance the
realism of the achievable climate benefits. In this context, once individual flight trajectories
are optimized, they are integrated into the overall traffic network to assess their collective
impact on ATM system manageability, particularly regarding air traffic complexity.

This study adopts the complexity score as a quantitative measure to evaluate air traf-
fic complexity. The complexity score consists of three different indicators, each being used
to show a certain traffic characteristic: vertical, horizontal, and speed, different interacting
flows [94]. As the presence of two aircraft in the same volume does not provide informa-
tion on the severity and period of the potential hazards, the three mentioned indicators

https://doi.org/10.5281/zenodo.7495472
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are exploited to find an insight into the duration of having a disordered and difficult-to-
handle traffic situation. To evaluate complexity, the airspace is partitioned into uniform
four-dimensional grids. Two aircraft are considered to be interacting at any given time if
they occupy the same grid from each aircraft’s perspective. Once an interaction is detected,
the above indicators are computed for each aircraft pair.

Vertical interaction is used as a measure of traffic in evolution. This indicator concerns
not only the vertical and horizontal distance but also the flight phases. Basically, managing
aircraft with different flight phases in a cell, such as a mix of cruising, descending, or climb-
ing, is more complicated than flights in similar phases (e.g., only cruise phases). Indeed,
the interactions are considered bilaterally. Following this logic, for two flights with different
phases being simultaneously present in a similar grid, two interactions are counted. In this
respect, for two aircraft k and i in the same cell, the vertical different interacting flows ν is
computed as:

νi,k =

2κ2/((tx
i − te

i) + (tx
k − te

k)) if (κ ̸= ∅) and (pi ̸= pk),

0 else,
(5.3)

where ti
e and ti

x are the entering and exit times of aircraft within the cell, respectively, pi is
the flight phase of the aircraft i, and κ is defined as:

κ = [te
i, tx

i] ∩ [te
k, tx

k].

Horizontal different interacting flow is a complexity indicator that accounts for the du-
ration of potential horizontal interaction between flights. It is assumed that controlling a
structured traffic situation, such as parallel flows, requires less effort than a disordered sit-
uation with crossing flows. The term horizontal interaction is used to refer to the scenario
where two aircraft with different heading angles are present in the same unit at the same
time. In this respect, for two aircraft k and i in the same cell, the horizontal different inter-
acting flows κ is computed as:

κi,k =

2κ2/((tx
i − te

i) + (tx
k − te

k)) if (κ ̸= ∅) and (|χi − χk| > 20◦),

0 else,
(5.4)

where χi is the heading angle of the aircraft i.
In general, air traffic situations are perceived to be less complex when aircraft within

a controller’s area of responsibility maintain similar speeds [94]. Accordingly, significant
speed variations among interacting flows are considered a contributing factor to increased
complexity. The relative speed between interacting aircraft flows, denoted by υ, is computed
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as:

υi,k =

2κ2/((tx
i − te

i) + (tx
k − te

k)) if (κ ̸= ∅) and (|vi − vk| > 35kts),

0 else
(5.5)

where vi is the speed of the aircraft i.
Once all indicators are computed, the complexity score is calculated as

Ψ = ν +κ + υ.

By computing the complexity score for each individual cell, a complexity map is constructed
as a function of the position and time.

5.3 Multi-agent reinforcement learning to manage air traffic com-
plexity

The integration of individually optimized, climate-aware trajectories into the air traffic net-
work can unintentionally increase traffic complexity, thereby challenging the operational
feasibility of such flight plans. To ensure that traffic remains manageable, it is necessary to
adjust flight profiles so that the resulting complexity does not exceed levels observed un-
der business-as-usual operations. This adjustment process requires each aircraft to make
decisions based on surrounding traffic conditions, dynamically modifying its trajectory to
mitigate complexity. Such a decentralized decision-making problem can be modeled as a
partially observable Markov decision process (POMDP).

5.3.1 Modeling complexity management as a MARL problem

As introduced in Chapter 4, the POMDP is defined by the tuple ⟨N ,S ,A,P , O, γ, R⟩. The
components retain the same definitions used in that chapter. We model the problem as a
fully cooperative framework where the reward function R : S ×A → R is shared across all
agents.

In the following, we define the specific components of the POMDP framework used to
address the problem of mitigating air traffic complexity, including the observation space,
action space, and reward function.

State space

In this study, the state st at time t is defined as the concatenation of the local observations
from all aircraft:

st =
[
o1

t , · · · , oN
t

]
.
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where each oi
t = O(st, i) represents the local observation of aircraft i, derived from the full

environment state via the observation function O.
This formulation assumes that the information of all agents is accessible during training,

consistent with the centralized training and decentralized execution paradigm, while during
execution, each aircraft relies solely on its own observation to make decisions.

Observation space

The observation space comprises two types of information: trajectory data and information
about neighboring aircraft. Trajectory data consists of the true airspeed (vi

t), heading angle
(χi

t), flight phase (pi
t) (i.e., climb, cruise, descent), and the duration (τi

t ) over which the aircraft
fly the most complex grid segment of its trajectory during [t, t + ∆t]. This is complemented
by information on neighboring aircraft within a defined vicinity, which aids the agent in as-
sessing the complexity of the surrounding traffic and making strategic decisions to mitigate
traffic complexity. We denote (vj

r, χ
j
r, pj

r) as the relative speed, heading, and phase differences
of neighboring aircraft j to the aircraft i. The term It aggregates this detailed information for
the m-th neighboring aircraft:

It =
(
(v1

r , χ1
r , p1

r )t, . . . , (vm
r , χm

r , pm
r )t

)
.

Based on the available data for each aircraft, the state observed by agent i at time t is defined
as:

oi
t = [vi

t, χi
t, pi

t, τi
t , It].

Action space

The decision space for the agents consists of admissible modifications to the aircraft’s tra-
jectory. Specifically, agents can perform predefined maneuvers to reduce traffic complexity,
categorized into two primary types: speed adjustments and altitude changes. Agents can
select modifications in one or both of the categories:

• Speed Adjustments:

– Increase Mach by 0.03

– Decrease Mach by 0.03

– Maintain current Mach

• Altitude Changes:

– Decrease by 2000 ft

– Increase by 2000 ft

– Maintain current altitude.
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The chosen action is consistently applied across the entire trajectory. For example, if an
agent opts to increase altitude, the entire flight profile is adjusted to reflect this change. Con-
sequently, all trajectory-related data, including information on neighboring aircraft, is also
updated.

Reward Function

The reward function R quantifies the immediate reward obtained by all agents for transi-
tioning from state s to state s′ due to the joint action a. In this study, the agents cooperate
with the objective of enhancing air traffic manageability. Accordingly, the complexity score
is employed as the performance indicator, which is presented in Section 5.2.

The reward function is formulated to promote network-level improvements by minimiz-
ing aggregated traffic complexity. It is defined as the difference between the initial complex-
ity, Ψ0, and the current complexity at each decision step:

Rt = Ψ0 −
N

∑
i=1

N

∑
k=1,k ̸=i

Ψi,k
t ,

Accordingly, agents are positively rewarded only when their collective actions contribute to
lowering overall traffic complexity, directly aligning the learning objective with the strategic
goal of enhancing network manageability.

5.3.2 MAPPO algorithm

Several approaches exist for finding the optimal policy in reinforcement learning, such as
value-based methods, policy gradient techniques, and actor-critic frameworks [141]. Policy
gradient methods, which directly optimize the policy, have demonstrated significant po-
tential in addressing various reinforcement learning problems [143]. Within this category,
trust region learning is particularly notable, with implementations such as trust region pol-
icy optimization (TRPO) and proximal policy optimization (PPO) standing out [184, 185].
TRPO updates the policy within a trust region to ensure stable and reliable policy improve-
ments, preventing drastic changes that could degrade performance [184]. However, TRPO is
computationally demanding to implement due to its reliance on second-order optimization
techniques, such as the Fisher information matrix. This complexity makes it less practical
for many applications [185].

To overcome these limitations, PPO has been introduced in [185]. PPO uses a surrogate
objective function to optimize the policy using first-order optimization methods while re-
taining the stability benefits of trust region approaches. We define the state value function
as:

Vπ(s) := Est∼P [
∞

∑
t=0

γtR(st, at)|s0 = s],
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which estimates the expected reward obtained by starting from state s and following the
policy π. The policy and value function are approximated using neural networks and pa-
rameterized using finite-dimensional parameters. Specifically, πθ denotes the actor-network
used to approximate the policy, and Vϑ represents the critic network utilized for approximat-
ing the value function. The surrogate objective function is formulated as follows:

L(θ) = Ea∼πθ ,s∼P

[
min

(
πθ(a|s)

πθold(a|s)Aπθ
(s, a), clip

(
πθ(a|s)

πθold(a|s) , 1± ϵ

)
Aπθ

(s, a)
)

.
]

The clipping mechanism ensures that the policy ratio πθ(a|s)
πθold

(a|s) is constrained between 1 + ϵ

and 1 − ϵ. This effectively allows PPO to regulate the extent of policy updates, ensuring
that the new policy πθ does not deviate excessively from the old policy πθold . By doing
so, PPO retains the advantages of the TRPO algorithm, such as stable and reliable policy
improvements, while being significantly easier to implement.

The advantage function Aπ is computed using generalized advantage estimation as [141]:

Aπθ
(s, a) := Eat∼πθ ,st∼P [

∞

∑
t=0

(γ)tδt+1|s0 = s, a0 = a],

δt = R(st, at) + γV(st+1)−V(st).

This function evaluates the benefit of taking action a in the state s relative to the baseline
value V(s).

Multi-agent PPO (MAPPO) extends the PPO algorithm to multi-agent environments, en-
abling multiple agents to interact within the same environment and learn coordinated poli-
cies for efficient decision-making [186]. MAPPO operates through two distinct phases: cen-
tralized training and decentralized execution. During the decentralized execution phase,
each agent follows a policy πi

θi , which is parameterized by θi.
In this study, we assume that all agents are homogeneous, sharing identical capabilities,

observation spaces, action spaces, and a common reward function that aligns them toward
the shared goal of minimizing air traffic complexity [187]. This homogeneity implies that
the optimal behavior for one agent is also optimal for all others, allowing agents to serve
interchangeable roles within the system and supporting the use of a common policy frame-
work. With homogeneous agents, policies can be trained more efficiently through parameter
sharing (i.e., θ1 = θ2 = ... = θN = θ). Following this assumption, we parameterize the pol-
icy π using a finite-dimensional parameter θ shared among all agents. In this setup, while
the policy is trained using the collective experience of all agents, each agent can still take
individual actions, πθ(·|oi

t), based on individual local observations oi
t [188].
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FIGURE 5.2: The proposed framework for managing the complexity of climate-optimized routes
based on MAPPO.

The policy parameters θ are optimized by maximizing the following surrogate objective
function:

L(θ) =
N

∑
i=1

Ea∼πθ ,s∼p

[
min

(
πθ(ai|oi)

πθold(ai|oi)
Aπ (s, a) , clip

(
πθ(ai|oi)

πθold(ai|oi)
, 1− ϵ, 1 + ϵ

)
Aπ (s, a)

) ]
.

(5.6)
In the centralized training step, a critic network Vϑ is employed as a central coordinator to

facilitate variance reduction. The critic network leverages global state information formed by
combining the observations of all agents, represented as s = [o1, ..., oN ]. This representation
allows the critic to effectively estimate the overall system value, incorporating information
that is not available to individual agents during decentralized execution.

The critic network is updated by minimizing the temporal difference error between the
estimated value and the target value. The loss function for updating the critic network is
defined as:

L(ϑ) = Ea∼πθ ,s∼P

[
∞

∑
t=0

(Vϑ(st)− yt)
2

]
,

where the target value yt is given by

yt = R(st, at) + γVϑ(st+1).

The proposed MAPPO framework is depicted in Figure 5.2, providing an overview of its
structure and components. The training procedure, following the outlined steps, is detailed
in Algorithm 3.
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Algorithm 3 Multi-Agent proximal policy optimization to mitigate complexity.

1: Input: αθ , Number of agents N, Batch size B, episodes K, steps per episode T, discount
factor γ, and GAE parameter λ

2: Initialize policy parameters θ, value function parameters ϑ
3: Initialize optimizers for policy and value function
4: for k = 0, 1, ..., K− 1 do
5: Collect a set of trajectories using policy πθ

6: Compute rewards rt = R(st, at), and log-probabilities log πθ(ai
t|oi

t)
7: Push transition {oi

t, ai
t, oi

t+1, rt} into the replay buffer
8: for each mini-batch B do
9: Calculate advantage function Â(s, a) using critic network

δt = R(st, at) + γVϑ(st+1)−Vϑ(st)

Â(st, at) =
T

∑
l=1

(γλ)lδt+l

10: Compute
Vtarget = Â(st, at) + Vϑ(st)

11: Compute surrogate objective L(θ, λ) according to Equation (5.6)
12: Update policy parameters θ via gradient ascent on L(θ, λ)
13: Update value function parameters ϑ via gradient descent on LV

LV =
1

BT

B

∑
j=1

T

∑
t=1

[(
Vϑ(st)−Vtarget

)2
]

14: end for
15: end for
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5.4 Simulation results

In this section, we assess the effectiveness of the proposed approach in planning practical
climate-optimized routes. First, the scenario definitions and simulation settings are outlined.
Subsequently, the simulation results are analyzed and discussed.

5.4.1 Scenario definition

The scenario considered in this chapter builds upon that introduced in Chapter 4, with an ex-
tended temporal scope. Specifically, it includes approximately 6,000 flights operating within
ECAC airspace on December 20, 2018, between 12:00 and 16:00 UTC.

The flight data, including the time and altitude of the first crossed waypoint in the con-
sidered time window, are extracted from the DDR2 dataset. For flights that start or land
outside ECAC airspace, we model only the segments of the flights that take place within
ECAC airspace. The first and last crossed waypoints within the considered areas and time
window are selected as the origin and destination for the simulation. For all flights that are
in the climb, cruise, or descent phases at the considered spatiotemporal frame, trajectory
optimization is performed.

The weather data required for the optimization are sourced from the ERA5 reanalysis
data product, including wind components, humidity (i.e., relative and specific), top net ther-
mal radiation, potential vorticity, and geopotential. These variables are needed for represent-
ing aircraft dynamics and estimating the climate impacts of non-CO2 forcing agents using
aCCFs. The reported values in this chapter represent the mean outcome across 10 ensemble
members of ERA5 weather data used in the flight planning process.

Since flight planning is performed within structured airspace, admissible route graphs
are required for the optimization. In this study, the route graphs for the considered scenario
are derived from the DDR2 environment data of June 2018.

5.4.2 Micro-scale trajectory optimization

Once we have all flight data and weather variables, we employ ROOST to plan climate-
optimal trajectories. To explore different routing options, we follow a similar approach as in
the previous chapters, varying only EI while keeping the remaining weighting coefficients
in the objective function (i.e., Equation (5.1)) fixed as follows:

CI = 1[−], Ct = 0.75, C f = 0.51.

Five different routing options are generated, corresponding to EI values of
[0.0, 0.01, 0.1, 1.0, 10.0]. The parameter EI, as defined in Equation (5.1), serves as a weighting
parameter that prioritizes climate effects relative to operational costs. For illustration, the
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(A) Cost-optimized routes (EI = 0.0) (B) Climate-optimized routes (EI = 10.0)

FIGURE 5.3: Individually optimized flight trajectories for two different EI values, color-coded based
on flight levels. The color bar indicates flight altitudes.

trajectories associated with EI = 0.0 and EI = 10.0 are shown in Figure 5.3, with color coding
indicating the flight levels at which aircraft fly. The figure shows that as the weight assigned
to climate impact in the objective function increases (prioritizing climate benefits), the air-
craft tend to fly at lower altitudes. This trend is likely due to the greater potential for cooling
contrail formation at lower flight levels, as shown in Figure 5.4a. The computational time
for solving each trajectory optimization problem is approximately three seconds, with the
maximum number of iterations set to 4000 and each iteration taking about 0.8 milliseconds.
The trajectory planning simulations were performed using an NVIDIA GeForce RTX 3090
GPU.

5.4.3 Policy training setup

Following the micro-scale trajectory optimization, the proposed MARL algorithm described
in Section 5.3.2 is implemented in a custom environment. For training, trajectories corre-
sponding to EI = 0.0 (i.e., cost-optimal trajectories) are used. The experimental setup includes
the state space, action space, and reward function detailed in Section 5.3.1. All aircraft are
modeled as homogeneous agents with identical performance characteristics, sharing the ac-
tor network.

The actor is a fully connected multi-layer perceptron (MLP) with two hidden layers of
264 neurons and Tanh activations. This architecture was selected based on empirical tuning.
It maps local observations to a categorical distribution over the action set via a softmax trans-
formation. Actions are sampled stochastically during training and chosen greedily during
evaluation. If an aircraft selects an action that results in a constraint violation, the action is
invalidated and replaced with a no-modification, meaning the aircraft continues along its
original trajectory for that decision step. The chosen action is applied uniformly to the air-
craft’s trajectory over the considered interval. For example, if an agent selects an increase
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in speed, the adjustment is applied to the current speed, and the entire flight profile is up-
dated accordingly. This update propagates to all trajectory-related information, including
interactions with neighboring aircraft. Once all agents have selected their actions, the en-
vironment is updated, and the overall traffic complexity is recomputed. The average exe-
cution time per aircraft is approximately 2 µs (i.e., 2× 10−6 seconds). The critic network is
also a fully connected MLP with two hidden layers of 264 neurons, taking as input the state
st =

[
o1

t , · · · , oN
t
]
, and outputs a scalar value Vϕ(st), which provides stable feedback under

the shared reward and mitigates non-stationarity in multi-agent learning.
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(A) The aCCF of contrails.

(B) The aCCF of NOx.

FIGURE 5.4: The aCCF of contrails and NOx emissions on December 20th, 2018 (1200UTC).
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For complexity evaluation, the airspace is discretized into cells of size 20 nm×20 nm×30
hft, and a time window of 60 minutes is considered [94]. Trajectories are sampled at 10-
second intervals, which is sufficient to capture all cell transitions. The complexity is then
computed, and rewards are assigned in proportion to the change in traffic complexity: posi-
tive values when complexity decreases, zero when it remains unchanged, and negative val-
ues when it increases. To stabilize learning, rewards are normalized during training.

Transitions are stored in a replay buffer and generalized advantage estimation is used
to compute advantages, with λ = 0.95. Since the optimization objective concerns the total
accumulated impact over a known, finite flight duration, we set the discount factor γ = 1
so that rewards at all time steps contribute equally to the return [141]. The PPO surrogate
objective with clipping (ϵ = 0.2) is optimized for 10 epochs per update using minibatches of
size 32 sampled from batches of 124 episodes.

Several stabilization strategies are applied during training. Network weights are initial-
ized orthogonally (gain = 1.0 for hidden layers; 0.01 for the output layer) to improve signal
propagation. Entropy regularization with a coefficient of 0.01 is applied to encourage suf-
ficient exploration. Gradient clipping is applied with a maximum global norm of 10.0 to
prevent exploding gradients. The learning rate is linearly decayed from an initial value of
5× 10−4 to zero over the course of training. Finally, both advantages and rewards are nor-
malized to reduce variance and accelerate convergence.

Hyperparameters for MAPPO were determined partly from established MAPPO stud-
ies [186], including the GAE parameter (λ = 0.95), PPO clipping threshold (ϵ = 0.2), opti-
mizer epsilon, and network initialization. Other parameters were tuned empirically to en-
sure stable convergence in our domain, such as the entropy coefficient (β = 0.01), learning
rate (5× 10−4), and batch size and minibatch size. Table 5.1 summarizes the hyperparame-
ters used for the MAPPO algorithm.

To stabilize training and ensure computational tractability in large-scale scenarios (∼
6,000 flights), we adopt a sampling strategy during training. For the training stage, subsets
of air traffic are created to divide the overall traffic into smaller groups for computational
convenience. This approach is also justified by the fact that traffic complexity is primarily
localized, where an aircraft is mainly influenced by its nearby flights. This is due to the re-
quirement that both temporal and spatial distances between flights must be below certain
thresholds for interactions to be relevant. To generate each subset, a random geographical lo-
cation (defined by random latitude and longitude coordinates) is selected. From this central
point, a square region with a side length of 10◦ (i.e., 600 nautical miles (NM)) is considered.
Flights intersecting these regions during the specified timeframe are grouped into subsets.
This method allows individual flights to appear in multiple subsets alongside varying com-
binations of other flights, ensuring the coverage of the airspace and introducing variability
into the training data. Importantly, by limiting each training step to a subset of locally inter-
acting agents, this approach reduces gradient variance and improves training stability.
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TABLE 5.1: Hyperparameter settings for MAPPO training.

Parameter Value
Batch size (episodes) 124
Minibatch size 32
Training epochs per update (K) 10
Discount factor (γ) 1.0
GAE parameter (λ) 0.95
PPO clipping parameter (ϵ) 0.2
Entropy coefficient (β) 0.01
Learning rate 5× 10−4 (decayed linearly)
Optimizer Adam
Gradient clipping 10.0
Hidden layer dimension (actor/critic MLP) 264
Activation function Tanh (hidden layers), Softmax (actor output)
Orthogonal initialization Gain = 1.0 (hidden), 0.01 (output layer)

0 200 400 600 800 1000 1200 1400
Episodes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
ew

ar
d

FIGURE 5.5: Learning curves from five independent training runs, with shaded regions indicating
variability across runs.

Figure 5.5 shows the learning curves from five independent training runs, recorded ev-
ery 500 training steps. A moving average with a window size of 50 was applied to improve
visual clarity. Across all runs, the policies consistently converged to stable performance lev-
els with only minor variations in the final reward values. These results indicate that the
MAPPO framework is robust to initialization and training stochasticity.

5.4.4 Results

This section presents the simulation results, where the performance of the proposed algo-
rithm is evaluated and compared with the micro-scale trajectory optimization framework.
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(A) Micro-scale trajectory optimization

0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
F-ATR20 per flight [K] 1e 10

0.0

0.01

0.1

1.0

10.0

E
I

(B) Network-scale trajectory optimization using
MAPPO

FIGURE 5.6: Climate impact per flight for NOx, CO2, H2O, and contrails (AIC) across different EI
values.

The trajectories obtained from both approaches (i.e., micro-scale trajectory optimization
and the proposed network-scale trajectory optimization using MAPPO) are analyzed to eval-
uate their climate impact. Key species such as NOx, H2O, CO2, and aviation-induced cloudi-
ness (AIC) are examined. Figure 5.6 illustrates the average temperature response based on
future emission scenarios (F-ATR20) for different species across various EI values. The hor-
izontal axis represents the climate impact per flight in Kelvin, and the vertical axis shows
the EI values, ranging from 0.0 to 10.0. The results show that trajectory planning provides
the potential to mitigate climate effects. It can be seen that for the set of cost-optimal trajec-
tories (EI = 0.0), contrails predominantly have a warming impact. However, as the weight
of climate impact is increased in the optimization process, the total climate impact is re-
duced, primarily due to the generation of cooling contrails. A similar trend is observed with
our proposed approach, where the climate impact also decreases with increasing EI values.
Nevertheless, the degree of mitigation is slightly diminished compared to the micro-scale
approach, particularly in the generation of cooling contrails.

Figure 5.7 illustrates the percentage change in climate impact for each species compared
to the baseline scenario (micro-scale trajectory optimization with EI = 0.0). It can be seen
that contrails have the highest potential for climate impact mitigation. This mitigation is
primarily achieved through cooling contrail generation. These findings align with the re-
search in [20], which highlighted that flight planning is most effective in reducing contrails
climate effects. This is mainly due to the sharp aCCF pattern (i.e., related to conditions for
persistent contrail formation) of contrails, in which small trajectory changes can yield signif-
icant mitigation (see Figure 5.4a). However, for emissions such as NOx, as shown in [60] and
illustrated in Figure 5.4b, their climate sensitivity tends to be smoother, limiting the effec-
tiveness of trajectory planning in mitigating their climate effects, considering the trade-offs
with operating costs.
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(B) Network-scale trajectory optimization

FIGURE 5.7: Percentage change in the climate impact for different species.

The spatial distribution of the climate effects of contrails for the extreme EI scenarios
(0.0 and 10.0) is presented in Figure 5.8, providing insight into where persistent contrails are
formed and how they vary across different flight levels and regions (for a complementary
presentation of the overall climate impact (i.e., net ATR) see Figure 5.9). Figure 5.8a shows
the distribution of persistent contrails for cost-optimal trajectories, which predominantly ex-
hibit warming effects. In contrast, the maps corresponding to EI = 10.0, obtained from micro-
scale trajectory optimization and network-scale optimization using MAPPO, demonstrate a
reduction in warming contrails and an increase in cooling contrails, particularly at lower
flight levels, compared to the cost-optimal scenario. This shift is attributed to the rerout-
ing of climate-optimal flight paths from higher altitudes to lower altitudes (e.g., FL 280-300,
300-320, 320-340), where conditions are more favorable for generating cooling contrails (see
Figure 5.4a). Comparing Figures 5.8b and 5.8c, we observe that while the overall pattern
remains similar, the intensity and extent of cooling effects are slightly reduced when using
the proposed approach. This indicates that the network-scale optimization with MAPPO
effectively mitigates climate impacts, albeit achieving a slightly lower degree of mitigation
due to the need to address air traffic manageability.

To evaluate the manageability of the ATM system, the complexity of all routing options
is assessed. Figure 5.10 presents a comparison of aggregated and maximum air traffic com-
plexity for trajectories obtained using micro-scale optimization and the proposed network-
scale approach. The complexity of different routing options is reported to examine the man-
ageability of air traffic under different levels of climate optimality. Aggregated complexity
represents the cumulative measure of traffic complexity across the entire airspace and time
period under analysis. The results reveal a clear trend: for trajectories generated through
micro-scale optimization, increasing the weighting parameter EI to enhance climate impact
mitigation results in a rise in air traffic complexity.

Notably, for the EI=10.0, the aggregated complexity increases by 68.4% compared to the
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(C) Climate-optimal trajectories (EI = 10.0) obtained from network-scale trajectory optimization using MAPPO.

FIGURE 5.8: The spatial distribution of persistent contrails (both warming and cooling) formed along
trajectories for different sets of optimized routes.
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(A) cost-optimal trajectories (EI = 0.0).
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(B) Climate-optimal trajectories (EI = 10.0) obtained from micro-scale trajectory optimization.
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(C) Climate-optimal trajectories (EI = 10.0) obtained from network-scale trajectory optimization using MAPPO.

FIGURE 5.9: Net average temperature response (net ATR) maps.
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FIGURE 5.10: Comparison of aggregated and maximum air traffic complexity for micro-scale and
network-scale trajectory optimization approaches for different EI values.

cost-optimal baseline. The majority of this increase (approximately 51.6%) stems from lat-
eral interactions, as more flights are rerouted horizontally to avoid climate-sensitive regions,
leading to a higher number of crossing and merging points (with heading differences of-
ten exceeding 20◦). Additionally, speed interactions contribute 16.5% to the total increase.
As the weight of climate impact increases, aircraft tend to adopt different combinations of
flight levels and Mach numbers to minimize environmental impact and operational costs,
which results in greater speed differences between aircraft pairs. In contrast, vertical inter-
actions exhibit a negligible change (only 0.2%), since most flights remain in the cruise phase
throughout their trajectory and continue to be classified as such at the cell level. These find-
ings highlight that optimizing solely for climate benefits, without accounting for air traffic
interactions, can challenge airspace manageability. In contrast, the proposed network-scale
approach achieves a more balanced outcome; the aggregated complexity remains compara-
ble to, or in most cases lower than, that of the cost-optimal trajectories.

Figure 5.10 also presents the maximum complexity values for both approaches. Maxi-
mum complexity represents the highest level of traffic complexity observed at any specific
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time and location within the airspace. This metric highlights the peak, or worst-case sce-
nario, of traffic complexity. The results show that maximum complexity significantly in-
creases when adopting climate-optimized trajectories from micro-scale optimization, partic-
ularly as EI increases. This can create hotspots of high congestion, posing safety and oper-
ational challenges for air traffic controllers. However, when using the proposed network-
scale approach, the maximum complexity consistently remains below the levels observed in
the cost-optimal scenario. This underscores the effectiveness of the introduced framework
in maintaining operational feasibility and preventing the creation of high-risk areas in the
airspace while still achieving reductions in climate impact. Overall, Figure 5.10 highlights
the difference between the two optimization methods. While the micro-scale optimization
approach exhibits a sharp increase in both metrics as we increase EI, the proposed approach
maintains relatively stable complexity values.

To provide visual insight into the locations where traffic complexity increases, complex-
ity maps are generated. Figure 5.11 presents the spatial distribution of air traffic complexity
for three scenarios: (a) cost-optimal routes (EI = 0.0), (b) climate-optimal routes (EI=10.0)
obtained through micro-scale optimization, and (c) climate-optimal routes (EI=10.0) derived
from network-scale optimization using MAPPO. Figure 5.11a illustrates the baseline sce-
nario with cost-optimal trajectories (EI = 0.0). It can be seen that when the optimization fo-
cuses solely on cost, without accounting for climate impacts, air-traffic complexity remains
lower than that observed in the climate-optimal scenarios (i.e., higher EI values) and exhibits
a relatively more uniform spatial distribution.

Figure 5.11b illustrates the complexity for trajectories corresponding to EI = 10.0 obtained
through the micro-scale trajectory optimization approach. A significant increase in com-
plexity is observed, particularly at flight levels 300–320 and 320–340. Darker areas on the
map highlight regions with high complexity. A comparison between Figure 5.8 and Figure
5.11 reveals that these regions of heightened complexity align with areas where cooling con-
trails are generated. This correlation suggests that, in regions with high potential for cooling
contrail formation to mitigate overall climate impact, the concentration of flights increases,
leading to traffic congestion and, consequently, higher complexity.

Figure 5.11c illustrates the trajectories corresponding to EI = 10.0 obtained from the
network-scale optimization using MAPPO. While the spatial distribution of complexity dif-
fers from that in Figure 5.11a (i.e., the map associated with cost-optimal routes), the overall
severity remains comparable. This highlights the ability of the proposed network-scale ap-
proach to achieve climate benefits without deteriorating air traffic complexity. In comparison
to the micro-scale optimization, the proposed method provides a more balanced distribu-
tion of complexity across various flight levels, effectively reducing the congestion hotspots
observed in Figure 5.11b. This represents a key advantage of the proposed network-scale
approach, which delivers climate benefits while maintaining air traffic complexity at levels
comparable to those of cost-optimal scenarios.
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(A) Cost-optimal trajectories (EI = 0.0).
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(B) Climate-optimal trajectories (EI = 10.0) obtained from micro-scale trajectory optimization.
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(C) Climate-optimal trajectories (EI = 10.0) obtained from network-scale trajectory optimization using MAPPO.

FIGURE 5.11: The complexity maps obtained for different sets of optimized trajectories.



5.4. Simulation results 115

TABLE 5.2: Number of potential conflicts after micro-scale optimization and the proposed MAPPO-
based framework across different EI values

EI = 0.0 EI = 0.01 EI = 0.1 EI = 1.0 EI = 10.0

Micro-scale traj. opt. 1369.0 1503.0 1534.0 1551.0 1571.0

Proposed macro-scale traj. opt.
(MAPPO)

825.0 905.0 963.0 1010.0 943.0

A post-optimization analysis was conducted to evaluate potential conflicts following
both the micro-scale trajectory optimization and the proposed network-level framework
based on MAPPO. Table 5.2 reports the total number of potential conflicts observed under
different EI values. The results show that, under micro-scale optimization, which priori-
tizes climate impact mitigation without accounting for traffic complexity, higher EI values
lead to an increase in potential conflicts. In contrast, the proposed MAPPO-based resolu-
tion reduces conflicts, with values consistently lower than those observed in the baseline
business-as-usual trajectories. These findings suggest that addressing traffic complexity can
also contribute to conflict mitigation.

To provide further insight, Figure 5.12 illustrates the spatial distribution of potential con-
flicts across flight levels. Under micro-scale optimization, conflicts not only increase in num-
ber but also tend to concentrate at specific altitudes (e.g., FL300–320), which aligns with the
complexity patterns observed in Figure 5.11. In comparison, the MAPPO-based resolution
reduces the overall number of conflicts and yields a more balanced distribution across alti-
tude layers.

Figure 5.13 presents a comparison of airspace user preferences, including fuel consump-
tion, flight time, and operating cost, across different EI values for both micro-scale and
network-scale optimization approaches. The top and middle panels show that fuel con-
sumption and flight time increase for higher EI values. This trend can be explained by the
fact that climate-optimal trajectories typically deviate from cost-optimal routes to avoid (or
fly through) warming (or cooling) climate-sensitive regions, leading to increased operational
costs (see the bottom panel). While both approaches exhibit this trend, the proposed method
results in higher fuel consumption compared to the micro-scale approach, while consistently
achieving shorter flight times. This can likely be attributed to adjustments made to indepen-
dently climate-optimized flight profiles to maintain traffic complexity at standard levels.
Specifically, some flights are shifted from the most complex flight levels (FL300-320; see Fig-
ure 5.11b) to FL280-300 (compare Figures 5.11b and 5.11c), leading to shorter flight times.
Overall, the figure demonstrates that while the proposed network-scale approach leads to
slightly higher fuel consumption, it compensates for this with shorter flight times and main-
tains SOC values close to those of the micro-scale method.
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(A) Cost-optimal trajectories (EI = 0.0).
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(B) Climate-optimal trajectories (EI = 10.0) obtained from micro-scale trajectory optimization.
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(C) Climate-optimal trajectories (EI = 10.0) obtained from network-scale trajectory optimization using MAPPO.

FIGURE 5.12: The conflict maps obtained for different sets of optimized trajectories.
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FIGURE 5.13: Comparison of consumed fuel, flight time, and operating cost for micro-scale and
network-scale trajectory optimization approaches for different EI values.

Figure 5.14 presents a radar plot comparison of three key metrics, climate impact, operat-
ing cost, and air traffic complexity across different EI values for both approaches: micro-scale
trajectory optimization and proposed network-scale trajectory optimization using MAPPO.
Figure 5.14a illustrates the performance of the trajectories optimized solely for climate im-
pact. As the EI value increases, there is a reduction in the climate impact, as indicated by the
decreasing radial distance in the green zone. However, this is accompanied by increases in
both operating costs and air traffic complexity, particularly when EI = 1.0 and EI = 10.0.
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FIGURE 5.14: Performance comparison of micro-scale and proposed network-scale trajectory opti-
mization approaches, illustrated using radar plots for three key metrics: climate impact, operating
cost, and air traffic complexity, across different EI values. The dashed blue circle represents the base-

line for all metrics.

Figure 5.14b illustrates the performance of the proposed network-scale trajectory opti-
mization using MAPPO, demonstrating a more balanced outcome across the evaluated met-
rics. While there is a slight reduction in climate benefits in comparison with the micro-scale
optimization method, the introduced framework outperforms in terms of air traffic com-
plexity. The complexity remains consistently lower, even at higher EI values, highlighting
the network-scale approach’s ability to redistribute air traffic and mitigate the creation of
complexity hotspots. Additionally, the operating cost remains comparable, highlighting the
effectiveness of the proposed approach in planning operationally feasible climate-optimized
flight plans.

All in all, the results highlighted a trade-off between climate impact mitigation, opera-
tional costs, and air traffic complexity, as prioritizing one objective often necessitates com-
promises in the others. The key challenge lies in finding an optimal balance between these
competing objectives. Figure 5.14 illustrates this trade-off. Ideally, a feasible solution would
position all objectives within the baseline radius (dashed blue circle) on the radar plot. How-
ever, due to the trade-offs involved, it is not possible to minimize all three simultaneously.
For a solution to be considered feasible and optimal, it must maintain operational costs and
air traffic complexity near the baseline while achieving reductions in climate impact that fall
within the baseline range.
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5.5 Summary

This chapter presented a framework for planning climate-friendly aircraft routes in an oper-
ationally feasible manner within the structured airspace. The proposed methodology com-
prised two key steps: first, optimizing individual trajectories to mitigate climate effects, and
second, developing a decision-making strategy to mitigate the increased complexity associ-
ated with climate-optimized routes.

The effectiveness of the proposed framework is validated through a case study using real
traffic data over European airspace. The results demonstrated that the proposed framework
is capable of providing solutions that achieve a relatively balanced trade-off between climate
impact, operational costs, and air traffic complexity. Notably, for EI = 0.1, the proposed
framework achieved a 21.0% reduction in climate impact, accompanied by an 11.0% decrease
in overall air traffic complexity compared to cost-optimal trajectories. This improvement
was attained with a 1.0% increase in operational cost.

Compared to the results obtained in Chapter 4, the climate impact mitigation achieved
in this chapter is lower, even for higher EI values. This difference stems from the underlying
airspace structures considered in each case. In the previous chapter, the optimization was
applied to a fully free-routing environment, where aircraft had greater flexibility to avoid
warming regions or deliberately fly through cooling regions. In contrast, the structured
airspace considered in this chapter imposes more routing constraints, limiting the potential
for climate-aware rerouting and, consequently, reducing the achievable mitigation.

As discussed in previous chapters, such a sequential framework provides stakeholders
with the flexibility to tailor flight planning according to their operational priorities. Those fo-
cused on minimizing operational costs may prefer cost-optimal trajectories (EI = 0.0), while
stakeholders prioritizing climate impact reduction may opt for higher EI values, leading to
the highest possible reductions in climate effects. Those seeking a more balanced routing
strategy might select intermediate EI values, aiming to reduce climate impact while main-
taining manageable traffic complexity and controlling operating costs.

One limitation of the proposed approach in this chapter concerns the definition of the de-
cision space, which was restricted to vertical and speed adjustments for simplicity. Expand-
ing it to include lateral modifications is expected to increase flexibility, as lateral deviations
can introduce additional spatial separation between flights, offering alternative routing op-
tions to alleviate localized congestion and mitigate traffic complexity. From the climate per-
spective, any trajectory adjustment alters the climate impact due to the spatiotemporal de-
pendency of non-CO2 effects. However, these effects are generally more sensitive to altitude
than to lateral deviations [183]. This suggests that a promising strategy would be to retain
the climate-optimal altitude profiles obtained in the first stage and use lateral deviations for
complexity reduction. Such an approach could enhance the framework’s performance and
support a more balanced trade-off between operational feasibility and climate objectives.
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Chapter 6

Integrated framework for
climate-optimal flight planning at the
network-scale within structured
airspace

In the previous chapters, we introduced sequential frameworks to address the problem of
climate-optimal flight planning at the network scale. While these frameworks demonstrate
effectiveness, they encounter computational limitations when applied to large-scale scenar-
ios, such as yearly analysis. The primary challenge lies in the first phase of the process, the
individual trajectory optimization. Despite the use of fast flight planning tools, optimizing
each trajectory independently remains a time-consuming process. For instance, conducting
a year-scale analysis involves millions of flights, each requiring optimization under different
trade-offs between climate impact and operational cost, imposing significant computational
burdens. Therefore, an integrated optimization framework that eliminates the need for a se-
quential process is essential to enable large-scale climate-aware flight planning, supporting
the development of indicators toward policy actions. However, such a solution remains an
open research gap.

This chapter introduces a scalable optimization framework for climate-optimal flight
planning that simultaneously addresses climate impact mitigation and traffic manageabil-
ity within a unified formulation. To mitigate climate effects, we identify specific airspace re-
gions where aircraft emissions exert a strong warming impact, referred to as climate hotspots
or ECHO areas. These regions are incorporated as avoidance constraints within the opti-
mization problem. To ensure the operational feasibility of trajectories, traffic complexity
is considered as the objective function to be minimized. Starting from business-as-usual
(cost-optimal) trajectories, each aircraft adjusts its flight plan to avoid ECHO areas while
collectively reducing overall traffic complexity (see Figure 6.1).
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FIGURE 6.1: Overview of the proposed framework. Each aircraft receives a local observation about
the surrounding traffic and the location of climate hotspots (ECHO areas). Based on these observa-
tions, the aircraft executes actions according to a trained policy aimed at avoiding hotspots while

maintaining manageable aerial traffic.

The proposed approach employs a cooperative framework based on multi-agent proxi-
mal policy optimization (MAPPO) and adapts it to incorporate constraint handling for in-
dividual agents through the Lagrangian approach. Similar to the approach presented in
Chapter 5, we employ a centralized training with decentralized execution paradigm, which
facilitates efficient coordination among aircraft during training while allowing each agent
to operate independently during execution [189]. Recognizing the need for scalability in
scenarios involving varying numbers of agents, we implement shared policy parameters,
ensuring flexibility across diverse air traffic situations.

The rest of this chapter is structured as follows. Section 6.1 defines the problem of
network-scale aircraft trajectory optimization for climate impact mitigation, formulating it
as a constrained optimization problem. Section 6.2 presents the proposed constrained multi-
agent reinforcement learning (CMARL) algorithm to solve the stated problem. Section 6.3
then reformulates the network-scale optimization problem within the CMARL framework.
Finally, Section 6.4 describes the simulation setup, outlines the implementation details of the
proposed algorithm, and presents the experimental results.

Parts of the content presented in this chapter are adapted from the published work in
[32].
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6.1 Problem statement

This section formulates the climate-optimal flight planning problem at the network scale and
presents its key components, including representation of air traffic, integration of climate
impact, and consideration of air traffic manageability.

6.1.1 Air traffic

To formulate the problem of climate-optimal flight planning at the network scale, we con-
sider a traffic consisting of N aircraft operating simultaneously in a shared airspace over a
finite planning horizon T. Each aircraft i ∈ {1, . . . , N} follows a trajectory denoted by Γi

which represents the sequence of its flight state variables over time and is defined as:

Γi =
[
(φi

0, λi
0, hi

0, χi
0, pi

0, vi
0, mi

0, ti
0), · · · , (φi

k, λi
k, hi

k, χi
k, pi

k, vi
k, mi

k, ti
k)
]

.

Each trajectory Γi is discretized into k time steps using a specified temporal resolution δt,
such that k = ti

f /δt, where ti
f is the flight time of aircraft i. At each discretized point l,

φi
l denotes latitude [degrees], λi

l longitude [degrees], hi
l altitude [hft] (1 hft = 100 feet), χi

l

heading angle [degrees], pi
l flight phase (i.e., climb, cruise, descent), vi

l speed [kts], mi
l aircraft

mass [Kg], and ti
l time [s].

In this formulation, it is assumed that the initial flight plans of all aircraft are cost-
optimal, and the objective is to iteratively modify these trajectories through a series of dis-
crete actions in order to mitigate climate impact while maintaining traffic manageability.
These actions, applied at each decision point, are defined as:

ui
l = [δφ, δλ, δh, δv],

which represent adjustments to the aircraft’s lateral position (latitude and longitude), alti-
tude, and speed, respectively.

As a result of applying a control action ui
l at step l, the flight plan is updated. The full tra-

jectory is then recalculated to reflect the new profile, accounting for changes in mass, thrust,
Mach number, and other performance-related variables. This update is performed using the
trajectory prediction module based on the dynamical model presented in Chapter 4, Equa-
tion (4.1), in which the equations of motion are evaluated algebraically.

6.1.2 Climate impact

As presented in the previous chapters, the non-CO2 climate impacts of aircraft emissions,
including contrail formation and nitrogen oxides (NOx)-induced effects, exhibit large spa-
tiotemporal variability. Rather than accounting for the full spectrum of climate-sensitive
areas with varying intensity levels in flight planning, a more practical alternative is to focus
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exclusively on regions where emissions are expected to have a particularly strong climate
impact. These regions are commonly referred to as climate hotspots or ECHO areas. Such
areas are typically identified by applying predefined thresholds to filter climate-sensitive
areas. In this framework, the aCCFs of all relevant species are first computed using the for-
mulations presented in Chapter 3. These aCCFs are then merged to represent the overall
climate sensitivity at each spatiotemporal location. A region is classified as a climate hotspot
if its merged aCCF value exceeds a predefined threshold. This threshold is determined by
computing the cumulative distribution function of the merged aCCF values and selecting a
user-defined upper quantile (e.g., the top 5% corresponding to the 95th percentile). For a de-
tailed definition of climate hotspots and an approach to determine appropriate thresholds,
the reader is referred to [190], which also describes the implementation in the CLIMaCCF
library [190].

Once the hotspot areas are defined, a cost penalty is imposed on aircraft that intersect
these regions in order to account for their associated climate impact.

6.1.3 Air traffic manageability

In addition to mitigating climate impact, ensuring the operational manageability of the re-
sulting trajectories is a key objective. Air traffic manageability reflects the system’s capacity
to safely and efficiently accommodate new (updated) trajectories without overloading air
traffic controllers or compromising safety. To incorporate manageability into the optimiza-
tion framework, it is necessary to quantify it in a tractable and interpretable manner. In this
study, air traffic complexity is used as a proxy for manageability.

Similar to Chapter 5, to quantify the air traffic complexity, we adopt the complexity score
as the performance metric to provide insights into potential hazards within the airspace, fo-
cusing on the duration and severity of interactions rather than solely the presence of aircraft
in the same volume. Two aircraft are considered to be interacting at a given time if, from
each aircraft’s perspective, the other is located within the same four-dimensional grid cell,
defined over latitude, longitude, altitude, and time [94]. The complexity for each aircraft i
with respect to aircraft k is computed as follows:

Ψi,k
t =

gt+∆t

∑
gt

(νi,k +κi,k + υi,k), (6.1)

where gt is the grid that aircraft i enters at time t, and gt+∆t is the cell that aircraft i exits
at time t + ∆t. The sum operator encompasses all cells that aircraft i crosses between gt

and gt+∆t. The variables νi,k, κi,k and υi,k are computed using the formulations presented in
Chapter 5, Section 5.2.
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6.1.4 Optimization problem formulation

The overall objective is to determine a set of trajectory modifications U = [u0, . . . , uN ], where
ui = [ui

0, . . . , ui
d] denotes the sequence of actions applied to the aircraft i over d decision steps,

that jointly minimize traffic complexity while avoiding climate hotspot areas.
Formally, the problem can be stated as:

min
U=[u1,...,uN ]

N

∑
i=1

N

∑
k=1
k ̸=i

T

∑
t=0

Ψi,k
t (ui, uk)

subject to

Γi(ui) ∩HECHO = ∅, ∀i ∈ {1, . . . , N}.

6.2 Constrained multi-agent reinforcement learning

To solve the above problem in a scalable and adaptive manner, we formulate it as a decen-
tralized partially observable constrained Markov decision process, which is then addressed
using a constrained multi-agent reinforcement learning (MARL) framework. In the follow-
ing, we first introduce the decentralized partially observable constrained Markov decision
process formulation and then present the proposed algorithm used to solve it.

6.2.1 Partially observable constrained Markov decision process

A partially observable constrained Markov decision process is defined by the tuple
⟨N ,S ,A,O,P , γ, R, {Ci}N

i=1, {ci}N
i=1, s0⟩, where,N = {1, . . . , N} represents the set of agents,

S is the state space, Ai denotes the action space for agent i, A = A1 × · · · × AN is the joint
action space for all agents, oi = O(S , i) represents the local observation for agent i at state
s, P : S × A → ∆(S) is the state transition probability function, γ ∈ [0, 1) is the discount
factor, R : S × A → R is the shared reward function, Ci : S × Ai → R is the cost function
(penalty function) for agent i, with a cost threshold ci.

We denote the initial state of the environment by s0 ∈ S . At each time step t, agent i
observes oi

t and selects an action ai
t according to a randomized stationary policy πi(·|oi

t) ∈
Πi. The joint action of all agents at = (a1

t , . . . , aN
t ) is then executed, transitioning the system

to a new state st+1 ∼ P(·|st, at). Each agent i then receives a reward R(st, at) and incurs
a penalty cost Ci(st, ai

t). In this fully cooperative setting, the reward function R depends
on the joint actions of all agents, reflecting its coupling across agents. The constraints are
decoupled, as each agent’s cost Ci depends only on its own actions ai.

The set of joint policies is denoted by π = {πi}i∈N and is represented as Π := Π1 ×
· · · × ΠN . For any joint policy π ∈ Π, we define the reward value function at state s as
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Vπ
R (s) := Eat∼π,st∼P

[
∑∞

t=0 γtR(st, at) | s0 = s
]

and cost value function at state s as Vπ
Ci(s) :=

Eat∼π,st∼P
[
∑∞

t=0 γtCi(st, ai
t) | s0 = s

]
for i ∈ N .

The goal is to find a policy that maximizes the reward value function Vπ
R (s0) while ensur-

ing that the constraint Vπ
Ci(s0) ≤ ci is satisfied for every agent i. Formally, this is expressed

as:

max
π∈Π

Vπ
R (s0), s.t. Vπ

Ci(s0) ≤ ci, ∀i ∈ N . (6.2)

In this study, we focus on a large population of agents that are assumed to be homo-
geneous. This assumption is justified by a common reward function that aligns all agents’
interests toward minimizing air traffic complexity while avoiding climate-sensitive regions.
Such homogeneity also implies that the agents play interchangeable roles in the system’s
evolution and are nearly indistinguishable from each other [191]. Due to the homogene-
ity of the agents, parameter sharing can be applied to enhance scalability and training effi-
ciency [187]. This allows all agents to use a single shared policy [186,192]. The shared policy,
denoted by πθ and parameterized by θ, enables training to utilize the collective experience
of all agents. Meanwhile, each agent i can still take its own actions, πθ(·|oi

t), based on its
observations oi

t [188].

6.2.2 Constrained multi-agent proximal policy optimization

The constrained Markov decision process formulated above can be addressed using a con-
strained multi-agent reinforcement learning (MARL) framework. These approaches allow
agents to learn policies that maximize cumulative rewards while satisfying individual or
shared constraints. However, solving constrained MARL problems involves several chal-
lenges. These include non-stationarity, where the environment evolves dynamically in re-
sponse to the actions of multiple agents; scalability, where computational complexity grows
exponentially with the number of agents; and training stability, where large policy updates
can lead to instability and performance collapse by erasing previously learned good be-
haviors. Additionally, balancing reward optimization with constraint satisfaction further
complicates the problem.

In this study, we address these challenges by developing a constrained multi-agent re-
inforcement learning framework that builds on Multi-Agent Proximal Policy Optimization
(MAPPO) [186]. We extend MAPPO to handle explicit constraints via a Lagrangian relax-
ation, embedding constraint costs directly into the learning objective to ensure reliable safety
performance [193]. The resulting optimization is formulated as the following max–min prob-
lem:

max
θ

min
λi≥0, i∈N

Vπθ
R (s0)− ∑

i∈N
λi(Vπθ

Ci (s0)− ci). (6.3)
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To solve this problem, we apply gradient descent on the Lagrange multipliers {λi}i∈N and
gradient ascent on the policy parameters θ. However, directly applying gradient ascent on
θ can lead to large, unstable updates, potentially causing the policy to forget previously
learned good behaviors, which results in performance collapse. The PPO framework miti-
gates this issue by employing trust region optimization, which constrains the magnitude of
policy updates. PPO achieves this by clipping the probability ratio πθ

πθold
within (1− ϵ, 1+ ϵ),

ensuring that the new policy πθ remains close to the old policy πθold . This clipping mecha-
nism enhances stability and enables more controlled updates.

To introduce the MAPPO method [186], we define the reward state-action value function
and cost state-action value function as follows:

Qπθ
R (s, a) := Eat∼πθ ,st∼P [

∞

∑
t=0

γtR(st, at)|s0 = s, a0 = a],

Qπθ

Ci (s, ai) := Eat∼πθ ,st∼P [
∞

∑
t=0

γtCi(st, ai
t)|s0 = s, ai

0 = ai],

for i ∈ N . The advantage function is defined as:

Aπθ
u (s, a) := Qπθ

u (s, a)−Vπθ
u (s),

for u ∈ {R} ∪ {Ci|i ∈ N}. This function evaluates the benefit of taking action a in state
s relative to the baseline value Vπθ

u (s). Using these definitions, the MAPPO objective is
formulated as:

L
(

θ, {λi}i∈N
)

:= Ea∼πθ ,s∼p

[ N

∑
i=1

min
(

πθ(ai | oi)

πθold(ai | oi)
Aπθ

λi (s, a) ,

clip
(

πθ(ai | oi)

πθold(ai | oi)
, 1− ϵ, 1 + ϵ

)
Aπθ

λi (s, a)
) ]

, (6.4)

where Aπθ

λi (s, a) is defined as:

Aπθ

λi (s, a) :=
Aπθ

R (s, a)
N

− λi
(

Aπθ

Ci

(
s, ai

)
− ci

)
.

The advantage functions are computed using generalized advantage estimation [141]. Here,
λi penalizes constraint violations.

To solve problem (6.3), we iteratively apply the following update rules:

λi ← λi + αλ∇λi L
(

θ, {λi}i∈N
)

, ∀i ∈ N ,

θ ← θ + αθ∇θ L
(

θ, {λi}i∈N
)

,
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where αλ and αθ are the learning rates for updating {λi}i∈N and θ, respectively. These up-
dates balance constraint satisfaction with reward maximization at the individual agent level.
In practice, automatic differentiation frameworks such as TensorFlow and PyTorch facilitate
this gradient computation by calculating ∇θL(θ) automatically once the objective function
is defined; the optimizer subsequently applies this gradient to update parameters accord-
ingly [189]. The details of CMAPPO are summarized in Algorithm 4.

6.3 Casting climate-optimal trajectory planning at network scale
as a constrained MARL problem

In this section, we outline the key components of the MARL framework used to solve the
network-scale flight planning problem for the benefit of the climate. Specifically, we define
the observation space, action space, reward function, and cost (penalty) function.

To ensure better alignment with operational realities, we adopt a modeling assumption
in which the MARL environment is formulated using distance-based decision points rather
than discrete time steps. Specifically, each episode begins at the origin of a trajectory, and ob-
servations, actions, and updates are performed at fixed spatial intervals, for example, every
∆d nautical miles flown. This formulation provides a consistent and operationally meaning-
ful decision structure, as elapsed time can vary across aircraft due to differences in speed,
whereas distance flown offers a uniform basis for control and coordination.

6.3.1 State

The global state sd at decision step d is constructed by concatenating the local observations
from all aircraft:

sd =
[
o1

d, · · · , oN
d

]
.

6.3.2 Observation

The local observation oi
d for each aircraft consists of the following components:

• Trajectory information
This includes data on the aircraft’s trajectory up to the current decision point:

Γi
d =

[
(ti

1, χi
1, vi

1, pi
1), . . . , (ti

j, χi
j, vi

j, pi
j)
]

.

The trajectory over the interval [d, d + ∆d] is discretized into j points (j is fixed for all
flights to have the same observation dimension).

• Information about neighboring aircraft
The information about neighboring aircraft within a certain vicinity is provided, which
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Algorithm 4 Constrained Multi-Agent Proximal Policy Optimization (Constrained MAPPO)
1: Input: αθ , αλ, Batch size B, Number of agents N, episodes K, steps per episode T, discount factor

γ, safety threshold c, and GAE parameter λ
2: Initialize policy parameters θ, value function parameters ϕ, cost value function parameters ϕc,

and Lagrange multipliers λi for i = 1, 2, ..., N
3: Initialize optimizers for policy, value function, and cost value function
4: for k = 0, 1, ..., K− 1 do
5: Collect a set of trajectories using policy πθ

6: Compute rewards rt = R(st, at), costs ci
t = C(oi

t, ai
t), and log-probabilities log πθ(ai

t|oi
t)

7: Push transition {oi
t, ai

t, oi
t+1, rt, ci

t} into the replay buffer
8: for each mini-batch B do
9: Compute advantage function AR(s, a) based on value network with GAE

δRt = R(st, at) + γVR,ϕ(st+1)−VR,ϕ(st)

AR(st, at) =
T

∑
l=0

(γλ)lδRt+l

10: Compute
VR,target = AR(st, at) + VR,ϕ(st)

11: for each agent i do
12: Compute cost advantage functions Ai

C(o
i, ai), based on cost value networks with GAE

δi
Ct

= C(oi
t, ai

t) + γVC,ϕc(o
i
t+1)−VC,ϕc(o

i
t)

Ai
C(o

i
t, ai

t) =
T

∑
l=0

(γλ)lδi
Ct+l

13: Compute
Vi

C, target = Ai
C(o

i
t, ai

t) + VC,ϕc(o
i
t+1)

14: Calculate policy ratio ri
t =

πθ(ai
t |oi

t)

πθold
(ai

t |oi
t)

15: Compute average episode cost C̄i = 1
T ∑T

t=1

∆λi = − 1
BT

B

∑
j=1

T

∑
t=0

(
(C(oi

t, ai
t)− c) + (rt Ai

C(o
i
t, ai

t))
)

16: Update Lagrange multipliers λi ← ReLU
(
λi − αλ∆λi)

17: end for
18: Compute surrogate objective L(θ, λ) according to Equation (6.4)
19: Update policy parameters θ via gradient ascent on L(θ, λ)
20: Update value function parameters ϕ and cost value function parameters ϕc via gradient

descent on LV and LC,V

LV =
1

BT

B

∑
j=1

T

∑
t=0

[(
VR,ϕ(st)−VR,target

)2
]

LC,V =
1

BTN

B

∑
j=1

T

∑
t=0

N

∑
i=1

[(
VC,ϕc(o

i
t)−Vi

C,target

)2
]

21: end for
22: end for
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aids in assessing local air traffic complexity. The information about neighboring air-
craft for the agent i is given by:

Ii
d =

[
(t1

d, χ1
d, v1

d, p1
d), . . . , (tm

d , χm
d , vm

d , pm
d )

]
,

where m is the number of neighboring aircraft.

• Climate hotspot information
The hotspot information is defined as:

E = [e1, . . . , er],

where each element er represents the cumulative hotspot impact associated with the
action combination r over the interval [d, d + ∆d]. Thus, E captures the aggregated
environmental effect across all available actions at the current decision step.

Based on the above, the local observation for agent i at step d is defined as:

oi
d =

[
τi

d, Ii
d, E

]
.

6.3.3 Action

The action space for each agent is defined by potential modifications to the aircraft’s trajec-
tory, encompassing three types of maneuvers: lateral deviations, altitude changes, and speed
adjustments. Specifically, agents can modify their flight path by altering (I) the position of
trajectory nodes in latitude and longitude, (ii) the flight level, or (iii) the Mach number.

• Lateral deviations are implemented by modifying the geographic coordinates (latitude
and longitude) of the next discretized trajectory points. Specifically, the position is
adjusted by δl degrees in both latitude and longitude, where:

δl = [−0.4, 0.2, 0.0, 0.2, 0.4].

• Altitude adjustments are performed by modifying the flight level by δh, expressed in
units of 100 feet, where:

δh = [−40.0,−20.0, 0.0, 20.0, 40.0].

• Speed adjustments involve modifying the Mach number by:

δM = [−0.03, 0.0, 0.03].
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6.3.4 Reward function

The reward function R provides the immediate reward received by agents for transitioning
from state s to state s′ due to the joint action a. In this study, the reward is defined as follows:

R = −
N

∑
i=1

N

∑
k=1,k ̸=i

Ψi,k,

where Ψi,k is computed using Equation (6.1). In this formulation, the reward is always non-
positive, as it is defined as the negative sum of complexity. The maximum attainable reward
is zero, corresponding to the ideal scenario in which all complexity terms vanish, indicating
a manageable traffic configuration.

6.3.5 Constraints

The avoidance of climate hotspots is modeled as a set of constraints that each agent must
satisfy in order to ensure climate efficiency of planned routes. We define the following func-
tion to quantify the cost of constraint violation (i.e., the intersection of flight trajectories with
the climate-sensitive areas):

Ci
d =

0 if τi
d ∩ E = ∅,

ch otherwise.

Here, τi
d represents the trajectory segment of aircraft i during interval [d, d + ∆d], ch is a

penalty term proportional to the number of hotspot violations, and E denotes ECHO areas
assumed to be fixed during the considered interval. The equation implies that when an
aircraft flies through climate-sensitive areas, a cost ch is incurred.

6.4 Simulation results

This section evaluates the performance of the proposed approach through a real-world case
study. First, the experimental setup and simulation details are described, followed by a
presentation and analysis of the obtained results.

6.4.1 Experimental setup

The case study considered in this section is the same as that introduced in Chapter 5. It is
based on a real traffic scenario over the ECAC airspace on December 20, 2018, encompassing
all the flights operating between 12:00 UTC and 16:00 UTC. The weather data, including
wind and temperature, is obtained from the ERA5 reanalysis data products. The initial flight
trajectories are generated using our in-house trajectory planning tool, ROOST, as detailed in
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FIGURE 6.2: The identified climate hotspots for December 20, 2018, at 12:00 UTC.

Chapter 5. These trajectories correspond to the EI value of 0.0, representing the cost-optimal
trajectories. Although the initial trajectories in this study are generated using ROOST, the
framework is flexible and can use other planned trajectories, such as those available from
the DDR2 or automatic dependent surveillance–broadcast (ADS-B) dataset.

By inputting meteorological data, the CLIMaCCF library provides climate hotspot re-
gions, as detailed in Section 6.1.2. The output is a gridded dataset covering the European
airspace, with a horizontal resolution of 0.5◦× 0.5◦and a vertical resolution of 20 hft. To
ensure sufficient variability in hotspot distribution during training, one full year of climate
hotspot data from 2018 is used. Figure 6.2 illustrates an example of the identified hotspots
for December 20, 2018, at 12:00 UTC. In this study, only the aCCF associated with contrails is
used to identify the hotspots, as contrails have been shown to contribute the most to climate
impact and offer the greatest mitigation potential through flight planning [62]. Accordingly,
the resulting hotspot map shows regions with a strong warming potential due to contrail for-
mation. During trajectory planning, agents are encouraged to avoid these warming-sensitive
areas. It should be noted that regions with potential cooling effects are not considered in the
hotspot identification process.

Given the computational complexity of the traffic scenario, which involves approxi-
mately 6,000 flights, a graph-based clustering strategy is implemented to partition the traffic
scenario into smaller subsets of interacting flights. In this approach, each flight is repre-
sented as a node in a graph, and edges are established between flights (nodes) if they are
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within a defined spatial vicinity, within 2 degrees of latitude and longitude, and 50 hft of
altitude.

For each flight, a subgraph is formed consisting of the flight itself and all directly con-
nected neighboring aircraft. This grouping captures local interactions relevant to air traffic
complexity while allowing the exclusion of distant flights that have no influence on the tra-
jectory under consideration. Since air traffic complexity is a coupled objective, dependent on
spatiotemporal interactions between flights, this method ensures that only relevant subsets
of traffic are considered, significantly reducing the computational burden without compro-
mising the fidelity of the complexity estimation.

Once all preprocessing steps, such as trajectory clustering and climate hotspot genera-
tion, are completed, the proposed strategy introduced in Section 6.2.2 is implemented. The
experimental setup incorporates the state space, action space, reward, and cost formulations
detailed in Section 6.3. The learning architecture consists of three neural modules: an ac-
tor network that approximates each agent’s policy, a cost value network that estimates the
penalty associated with climate hotspot violations, and a value network based on a graph
neural network (GNN) that evaluates the overall complexity of the traffic configuration.

The actor network is implemented as a fully connected multi-layer perceptron (MLP). It
receives the agent’s observation as input and processes it through three hidden layers, each
with 64 neurons, using the Tanh activation function. The final layer outputs action logits,
which are passed through a softmax function to yield a probability distribution over the
discrete action space. Orthogonal weight initialization is applied across all layers to improve
training stability.

The cost network shares the same MLP architecture as the actor but serves to estimate
the expected cost associated with an agent’s trajectory, specifically the extent of hotspot vi-
olation. The network takes the agent’s state as input and outputs a scalar value using a
so f tplus activation function, ensuring non-negativity. This cost estimate is integrated into
the constrained optimization framework via Lagrangian relaxation, allowing the agent to
learn a policy that respects the safety threshold. The safety threshold is set to 1 to prevent
Lagrangian over-penalization in cases where hotspot avoidance is infeasible. Specifically,
some trajectories may inevitably intersect with hotspot regions, regardless of the action cho-
sen. Allowing a limited tolerance ensures that the learning process remains stable even when
strict constraint satisfaction is unattainable.

The value network is used to estimate the complexity of the current traffic configuration
and is implemented using a GNN to accommodate the variable number of aircraft in each
traffic cluster. Unlike standard MLP that require fixed input sizes, the GNN architecture en-
ables flexible reasoning over dynamic interaction graphs. Each node in the graph represents
an aircraft, and edges encode spatial proximity relations. The network includes two stacked
graph convolutional network layers, each with 64 hidden units, followed by a global mean
pooling operation that aggregates the node-level features into a fixed-size graph embedding.
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TABLE 6.1: Hyperparameters used in the experiment.

Hyperparameters Values Hyperparameters Values
lr rate 1e-4 Batch size 124
Safety_bound 1 ϵ 0.1
Eval. episodes 1000 Lagrangian coef. rate 0.001
Optimiser Adam N mini-batch 24

This embedding is then passed through two fully connected layers to produce a scalar esti-
mate of the value function, representing the complexity of the traffic from a network-level
perspective. ReLU activations are used within all layers, enabling nonlinear transformations
of the aggregated features.

To ensure stable and efficient training, several well-established reinforcement learning
techniques are employed, including reward normalization, advantage normalization, en-
tropy regularization (with a coefficient of 0.01), learning rate decay, and gradient clipping.
Details of the hyperparameters used in the experiment are presented in Table 6.1.

6.4.2 Results

This section presents the experimental results obtained from implementing the proposed
CMAPPO algorithm for climate-aware aircraft trajectory planning.

To illustrate the learning performance of the proposed algorithm, the evolution of the
reward and cost during training is shown in Figure 6.3 and Figure 6.4, respectively. The
results are recorded at evaluation intervals of 1000 training steps. For clarity of presentation,
a moving average with a window size of 500 is applied to smooth the curve. Figure 6.3
illustrates the learning performance of the CMAPPO framework, showing the evolution of
the average episodic reward over the training process. As depicted, the reward increases
steadily throughout training, indicating consistent improvement in policy performance and
successful adaptation to the trajectory planning task under constraint-aware conditions.
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FIGURE 6.3: Evolution of the average episodic reward over training steps.



6.4. Simulation results 135

0 250 500 750 1000 1250 1500 1750 2000
Episodes

1.5

2.0

2.5

3.0

3.5

C
os

t

FIGURE 6.4: Evolution of the average episodic cost associated with hotspot violations over training
steps.

Figure 6.4 shows the evolution of the average cost associated with hotspot violations.
For each episode, this cost is computed as the average violation across all agents, providing
a measure of how well the multi-agent system adheres to the constraints on a per-flight
basis. A clear downward trend is observed during the training phase, indicating that the
agents progressively learn to avoid climate-sensitive regions. This result demonstrates that
the Lagrangian-based optimization framework effectively encourages constraint satisfaction
while allowing for limited, unavoidable violations in scenarios where strict compliance is
not feasible. It can be seen that the cost curve exhibits more stable behavior compared to the
reward curve. This can be attributed to the nature of the optimization objectives: while the
reward is coupled across agents, requiring coordinated behavior and mutual adaptation, the
cost is computed on an individual basis, making it comparatively easier for each agent to
satisfy the constraint independently.

The policy derived from the proposed CMAPPO algorithm is applied to the presented
scenario (i.e., December 20, 2018, from 12:00 to 16:00 UTC). In this study, only aircraft cross-
ing climate hotspots or associated with high traffic complexity are allowed to deviate from
their original flight plans, while the rest follow their planned business-as-usual (cost-optimal)
trajectories. Figure 6.5 compares the flight profiles of business-as-usual trajectories with
those optimized using the proposed CMAPPO framework.

Figure 6.6 presents a comparative analysis between the performance of the business-
as-usual trajectories and those optimized using the CMAPPO algorithm. As shown in the
first figure, the optimized trajectories using CMAPPO achieve 87.2% reduction in contrail
climate impact, measured in terms of ATR. This contributes to an overall 9.1% reduction in
net climate impact when considering all relevant forcing agents. The third figure indicates
a 5.2% reduction in aggregated air traffic complexity, indicating that the algorithm not only
mitigates environmental impact but also improves traffic manageability by reducing traffic
complexity. However, as illustrated in the bottom figure, the observed environmental and
complexity-related benefits are accompanied by a 0.7% increase in operational cost relative



136 Chapter 6. Integrated framework for climate-optimal flight planning

FIGURE 6.5: Traffic distribution of business-as-usual trajectories and those optimized using the pro-
posed CMAPPO algorithms, color-coded based on flight levels. The color bar indicates flight alti-

tudes.

to the cost-optimal baseline. This increase reflects a 0.3% rise in total flight time and a 1.7%
increase in fuel consumption.

To visualize the mitigation of contrail-induced climate impact, Figure 6.7 presents the
ATR of contrails formed along the original trajectories (Figure 6.7a), the trajectories opti-
mized using the proposed CMAPPO algorithm (Figure 6.7b), and their difference (Figure
6.7c). As illustrated, the use of the proposed approach results in a reduction in warming con-
trail impacts, particularly at higher flight levels (e.g., FL 360–400), where intense warming
impacts are significantly diminished. Nevertheless, residual warming impacts are observed
in certain regions. This is expected, as certain climate-sensitive regions may be unavoidable
due to trajectory feasibility constraints, or no feasible control action can completely avoid
them. Moreover, Figure 6.7c reveals a few localized increases in warming, which are limited
in both magnitude and spatial extent relative to the regions exhibiting reductions. A likely
explanation is that the optimization process focuses solely on avoiding warming contrails
and does not explicitly consider the preservation or increase of cooling contrails. As a result,
some cooling contrails may be inadvertently reduced due to trajectory adjustments aimed at
minimizing complexity, leading to increases in net warming in specific regions.

To evaluate the impact of the proposed optimization strategy on air traffic complexity,
Figure 6.8 presents the spatial distribution of the complexity score across different flight lev-
els. Figure 6.8a shows the complexity map for business-as-usual trajectories, while Figure
6.8b illustrates the corresponding map for trajectories optimized using the CMAPPO algo-
rithm. A visual comparison between the two figures indicates a high degree of similarity,
suggesting that the overall level of complexity remains comparable to the baseline scenario.
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FIGURE 6.6: Performance comparison between business-as-usual trajectories and those optimized
using the proposed constrained MAPPO algorithm.

The difference between the two scenarios is illustrated in Figure 6.8. The figure high-
lights regions where complexity has either increased or decreased as a result of trajectory
modification. As shown, the overall changes in complexity are relatively small in magni-
tude. However, regions with decreased complexity (in blue) are more frequent and spatially
widespread than those with increased complexity (in red). This indicates that the proposed
algorithm consistently reduces complexity across broader areas of the airspace. These find-
ings confirm that the CMAPPO algorithm is capable of generating climate-aware trajectories
while maintaining the manageability of air traffic relative to current operations.
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(A) ATR of contrails along business-as-usual trajectories.

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 280-300

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 300-320

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 320-340

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 340-360

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 360-380

10°W 0°W 10°E 20°E 30°E

35°N

45°N

55°N

FL 380-400

2.830

1.895

0.960

0.025

0.910

1.845

2.780

3.715

4.650

AT
R

 o
f c

on
tr

ai
ls

1e 10

(B) ATR of contrails along trajectories optimized using the CMAPPO algorithm.
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(C) Difference in ATR of contrails between the two scenarios.

FIGURE 6.7: Comparison of the spatial distribution of persistent contrails formed along business-as-
usual trajectories and trajectories optimized using the CMAPPO algorithm.
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(A) Complexity map of business-as-usual trajectories.
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(B) Complexity map of optimized trajectories using the CMAPPO algorithm.
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(C) Difference in complexity between the two scenarios.

FIGURE 6.8: Comparison of air traffic complexity between business-as-usual trajectories and trajecto-
ries optimized using the CMAPPO algorithm. Blue regions indicate a reduction in complexity under

the CMAPPO policy, while red regions denote localized increases.
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6.5 Summary

This chapter introduced an integrated approach for climate-optimal flight planning consid-
ering air traffic complexity. The problem was formulated as a constrained MARL, where
air traffic complexity served as the objective function, and climate hotspot avoidance was
imposed as constraints. The proposed method employed the multi-agent proximal policy
optimization algorithm and adapted it to handle constraints related to climate hotspot avoid-
ance using the Lagrangian technique. The developed method was evaluated using a real-
world traffic scenario over European airspace. The results demonstrated that, compared to
business-as-usual trajectories, the integrated method effectively reduces both climate impact
and traffic complexity, albeit with an increase in operational cost.

Compared to the sequential framework presented in Chapter 5, the integrated approach
resulted in lower performance in terms of both climate impact mitigation and traffic com-
plexity reduction under the same traffic scenario. Specifically, for an EI of 0.01, the sequential
approach achieved a 14.37% reduction in climate impact, accompanied by a 0.7% increase
in operational cost and a 15.8% reduction in overall traffic complexity. In contrast, the in-
tegrated CMAPPO-based approach resulted in a 9.1% reduction in climate impact, a 0.6%
increase in operational cost, and a 5.2% reduction in complexity.

This difference in performance is primarily attributable to the optimization scope. In the
sequential framework, all non-CO2 forcing agents were considered in the optimization pro-
cess, thereby enabling additional mitigation through the reduction of other non-CO2 climate
effects(e.g., NOx) and formation of cooling contrails, which accounted for approximately
two-thirds of the total mitigation achieved. In contrast, the integrated approach developed
in this chapter focused exclusively on avoiding strong warming contrails and did not explic-
itly account for other non-CO2 forcing agents or the climate benefits achievable through the
formation of cooling contrails. This design choice inherently limits the achievable mitigation.
Specifically, the 9.14% net climate mitigation achieved by the integrated framework resulted
from a 12.18% reduction in contrail-related climate impact, offset by a 3.03% increase in the
impact of other forcing agents (e.g., NOx-induced effects), partially attributed to a 1.47% in-
crease in fuel consumption. Of the mitigation achieved through contrails, 98.30% resulted
from the avoidance of warming contrails, while the remaining 1.69% was due to an unin-
tended increase in cooling effects. While there is ongoing debate in the literature about the
extent to which cooling contrails should be considered, this limitation could be addressed
by extending the current framework also to target cooling-sensitive regions and incentivize
agents to pass through them when beneficial.

The sequential approach results in a more pronounced reduction in air traffic complexity
compared to the integrated method. This can be attributed to the design of its optimiza-
tion process, in which complexity reduction is the sole objective of the MARL framework.
Moreover, during simulation, all aircraft contributing to complexity are allowed to execute
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maneuvers, maximizing the resolution potential. In contrast, the integrated CMAPPO setup
incorporates two simultaneous objectives, climate impact mitigation and complexity reduc-
tion, which naturally introduces trade-offs that can limit the extent of achievable complexity
reduction. Furthermore, to minimize the number of rerouted flights from the BAU trajecto-
ries, only aircraft intersecting climate hotspots are permitted to take action during execution.
This constraint further limits the system’s ability to reduce overall complexity.

It is also worth noting that the integrated approach demonstrates slightly improved cost
efficiency, achieving a lower increase in operational cost compared to the sequential method.
Furthermore, the integrated approach offers advantages in terms of scalability and applica-
bility to large-scale or real-time scenarios. Unlike the sequential method, which requires an
initial trajectory optimization phase, the CMAPPO model can be applied directly to BAU tra-
jectories once trained. While cost-optimal trajectories from ROOST were used in this study
for consistency with Chapter 5, the framework can readily accept alternative input sources,
such as ADS-B trajectories. This flexibility makes the integrated approach more suitable for
large-scale evaluations and operational implementation, with reduced computational cost.
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Chapter 7

Conclusions and future work

This thesis has proposed advanced optimization frameworks to align climate-optimal flight
trajectories with the operational requirements of the ATM system. To support the concluding
remarks, all quantitative results reported in this chapter refer to the representative case study
conducted on 20 December 2018, from 12:00 to 16:00 UTC, within structured airspace. The
results associated with the sequential framework specifically correspond to the case with an
environmental index (EI) of 0.01.

Based on the analyses and findings presented in previous chapters, the following final
conclusions are drawn:

On micro-scale climate-optimized flight planning

• Given the strong spatiotemporal dependency of aviation-induced non-CO2 climate ef-
fects, flight planning can be used as a viable operational strategy to mitigate their im-
pact. This strategy is particularly effective for contrails, as the climate effect of contrails
exhibits substantial spatiotemporal variability, enabling effective mitigation through
slight trajectory adjustments. In contrast, mitigating other non-CO2 effects, such as
those induced by NOx emissions, was shown to be less effective due to their smooth
spatiotemporal climate sensitivity patterns. For the scenario examined, the micro-scale
trajectory optimization presented in Chapter 5 resulted in a 20.40% reduction in net cli-
mate impact, of which 18.54% was attributable to contrail mitigation.

• Micro-scale flight planning, while effective in reducing climate impact, introduces op-
erational challenges by creating traffic imbalances due to the consideration of climate-
sensitive areas, thereby increasing air traffic complexity and potential conflicts within
(i.e., for cooling impact) or around (i.e., for warming impact) these areas. Additionally,
deviating from cost-optimal routes results in higher operational costs. This highlights
inherent trade-offs between environmental performance, operational cost, and ATM
manageability. In the representative case study, the 20.40% reduction in climate im-
pact was accompanied by a 0.63% increase in operational cost and a 10.27% increase in
traffic complexity.
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On network-scale climate-optimized flight planning

• A sequential framework, where individual trajectories are first optimized for cost or
climate objectives, followed by a second optimization layer to ensure operational man-
ageability, proved promising for network-scale climate-optimal flight planning. This
framework enables trade-off analysis by generating a spectrum of solutions that reflect
varying degrees of climate optimality, air traffic complexity, and cost efficiency. Ap-
plied to the considered traffic scenario, the framework presented in Chapter 5 achieved
a 14.37% reduction in climate impact. Notably, this reduction in climate impact was
predominantly attributable to contrail-related effects, approximately one-third due to
a decrease in warming contrails and two-thirds due to an increase in cooling contrails.
Compared to micro-scale trajectory optimization, a reduction of approximately one-
quarter in climate benefit was made to ensure air traffic manageability, resulting in a
15.88% reduction in traffic complexity relative to cost-optimal trajectories. These re-
sults were achieved with a 0.77% increase in operational cost.

• The integrated framework that jointly optimizes climate impact and traffic manage-
ability in a single step offers a scalable and computationally efficient alternative. For
the same case study, this approach achieved a 9.14% reduction in net climate im-
pact and a 5.27% decrease in traffic complexity, with a 0.64% increase in operational
cost. The lower climate benefits of the integrated approach, compared to the sequen-
tial framework, are attributable to its optimization scope, focusing on avoiding strong
warming contrails without explicitly considering other non-CO2 effects or the contri-
bution of cooling contrails. Specifically, 98.30% of the reduction in contrail climate
impact was achieved through the mitigation of warming effects, with the remaining
1.69% due to an unintended increase in cooling effects. Given its computational effi-
ciency and integrated structure, requiring approximately 35 minutes to process≈ 6000
flights on a standard workstation, this approach is particularly well-suited for large-
scale, policy-relevant applications, enabling near real-time planning of operationally
manageable climate-optimized traffic.

• The selection between sequential and integrated frameworks should be guided by the
intended application. The sequential approach is more suitable for high-fidelity sce-
narios, such as daily flight planning, as it offers greater flexibility, albeit at a higher
computational cost. In contrast, integrated frameworks are better suited for applica-
tions requiring large-scale analysis of flight planning, such as the development of op-
erational and environmental indicators to support stakeholder decision-making and
policy guidance. Therefore, although integrated frameworks may offer slightly re-
duced optimality compared to sequential approaches, they provide a more scalable
and efficient solution for high-level assessments.
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On resolution strategies

• The findings indicate that the effectiveness of resolution strategies diminishes as tra-
jectories become more climate-efficient, revealing a natural constraint in achieving fea-
sible solutions under stringent climate objectives. This confirms a trade-off between
climate impact mitigation, operational cost, and air traffic manageability, where im-
provements in one objective often necessitate compromises in the others. One of the
main aims of this thesis was to identify a balanced solution that appropriately recon-
ciles these competing objectives.

• Both centralized and distributed resolution frameworks offer viable approaches to ad-
dress the operational challenges posed by climate-optimal trajectories, yet their suit-
ability depends on the context and scale of application. Centralized approaches (i.e.,
simulated annealing approach in Chapter 3) are conceptually simpler, making them
easier to prototype and evaluate in controlled or small-scale settings. However, they
lack scalability and depend on centralized access to system-wide data, which may
not always be available in real-world operations. In contrast, distributed MARL ap-
proaches, which rely on local information, have demonstrated greater effectiveness in
large-scale, realistic scenarios due to their scalability and robustness.

On multi-agent reinforcement learning

• Multi-agent reinforcement learning provides a scalable and effective approach for tra-
jectory planning in complex, high-dimensional air traffic environments. It enables de-
centralized decision-making while preserving global coordination and is particularly
well-suited to partially observable and dynamic environments such as the ATM sys-
tem. Parameter sharing within the MARL framework proved to be an efficient strategy
for achieving scalability, allowing the system to manage varying numbers of aircraft
across diverse traffic scenarios.

• Constrained multi-agent reinforcement learning proves effective in handling multiple,
often competing objectives, such as minimizing climate impact while addressing traffic
complexity, within a unified learning framework. Its ability to incorporate diverse ob-
jectives and constraints, combined with its scalability, fast execution time, and adapt-
ability to new traffic scenarios, makes it a practical solution for aviation applications.

• A challenge identified in this thesis is the strong dependence of MARL performance
on the formulation of the underlying optimization problem. The effectiveness of both
standard and constrained MARL is highly sensitive to how states, actions, and reward
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functions are mathematically defined. Identifying an appropriate problem represen-
tation is often non-trivial and may not yield an optimal abstraction of the operational
environment, potentially limiting both learning efficiency and generalizability.

Future work

Some future lines of investigation can be pursued to expand and complement the work
presented in this thesis.

• Incorporating meteorological uncertainty into flight planning: The climate impact
of non-CO2 emissions is highly dependent on meteorological variables (e.g., tempera-
ture, humidity, and radiation). As a result, the accuracy of climate impact estimates
is closely tied to the quality of weather forecasts. However, weather forecasts are
inevitably uncertain, which can highly affect the reliability of the identified climate-
sensitive areas. Beyond climate impact, aircraft performance variables (e.g., fuel con-
sumption and flight time) are also influenced by atmospheric conditions, particularly
wind and temperature. If such weather forecast uncertainties are not accounted for
during flight planning, there is a risk that the optimized trajectories may fail to deliver
the intended climate benefits and may not satisfy ATM manageability performance
metrics, such as air traffic complexity or the likelihood of conflicts. While Chapter 3 ex-
plicitly accounts for meteorological uncertainty using ensemble weather forecasts, the
resolution strategies presented in the subsequent chapters were implemented deter-
ministically. Future work should aim to extend flight planning frameworks by explic-
itly incorporating meteorological uncertainty in order to generate robust flight plans
at the network scale with greater confidence in both climate benefits and traffic man-
ageability.

• Using multiple climate impact estimation models: In this study, we relied on a single
model to estimate climate effects. However, previous research has highlighted poten-
tially large discrepancies between different climate impact estimation models [62]. This
suggests that the climate optimality achieved using one model may not hold when
evaluated with another, an aspect that requires careful consideration. Such discrep-
ancies between models are generally referred to as modeling uncertainty. Currently,
only two models, CoCiP and aCCFs, are capable of providing spatiotemporal esti-
mates of non-CO2 climate effects suitable for flight planning. To enhance confidence
in the achieved climate benefits, one potential direction is to incorporate multiple cli-
mate impact estimation models (e.g., aCCFs, CoCiP, and other emerging models) into
flight planning. This would support the identification of climate-optimal routes that
yield consistent benefits across different models. Such a multi-model approach is par-
ticularly relevant from a macro-level perspective, as it allows for evaluating how the
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inclusion of additional climate-sensitive regions identified by different models may
affect traffic manageability.

• Incorporating forecast data and evaluating associated uncertainty: The weather data
used in this study are based on a reanalysis product (i.e., ERA5). However, since re-
analysis data are only available after the actual realization of atmospheric conditions,
they are not suitable for the flight planning stage. Instead, forecast data should be em-
ployed for such applications. In this thesis, reanalysis was used due to open-source
availability and ease of accessibility. However, the proposed framework is compati-
ble with other types of meteorological datasets, including forecast data products (e.g.,
ensemble prediction system weather forecast). A relevant direction for future work is
to utilize forecast data for flight planning and subsequently evaluate the performance
of the planned trajectories under reanalysis data. This approach would allow for a
systematic assessment of forecast-induced uncertainty, as well as the sensitivity and
robustness of the optimized trajectories to such effects.

• Investigating alternative metrics for evaluating ATM system performance: In this
thesis, the number of potential conflicts and complexity scores were used as primary
performance indicators to evaluate the operational manageability of climate-optimized
flight planning. However, as outlined in Chapter 2, other ATM performance metrics,
such as capacity-demand balance, controller workload, and alternative complexity in-
dicators, offer complementary perspectives on the system behavior. Future research
should explore these metrics to enable a more comprehensive assessment of ATM per-
formance under climate-aware trajectory planning. A promising direction would be
to investigate the interdependencies among performance indicators, for example, by
optimizing with respect to one and analyzing its effects on the others to identify which
metrics are most effective and operationally relevant. Alternatively, multiple indica-
tors could be incorporated jointly in the flight planning framework to support a more
integrated and robust evaluation of ATM system performance.

• Incorporating additional operational constraints into the constrained MARL frame-
work: In Chapter 6, a constrained MARL framework was proposed to jointly optimize
climate impact and air traffic manageability. This framework assumed that the origi-
nal trajectories were cost-optimal and that slight modifications would not significantly
affect operational efficiency. A potential extension would be to incorporate operational
cost as an explicit constraint, by limiting cost increases using a mechanism similar to
the one employed for climate hotspot avoidance. Additional constraints could also be
introduced to reflect other ATM considerations, such as sector capacity limits. For in-
stance, a capacity threshold could be enforced to ensure that rerouting around climate-
sensitive areas does not lead to excessive demand in already saturated regions. Such
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extensions would enable a more comprehensive and operationally realistic application
of the constrained MARL framework.

• Extending the analysis to multiple aircraft types: This thesis focused on a single air-
craft type (i.e., A320-214), and the developed methodologies were built on that as-
sumption of shared policy parameters. However, real-world operations involve a het-
erogeneous fleet composed of various aircraft types. Therefore, the proposed frame-
works should be extended to accommodate multiple aircraft types to better reflect op-
erational realities. A potential approach to maintaining scalability while considering
different aircraft types is to cluster aircraft into categories based on their performance
models and assign a shared policy to each group. This ensures scalability, as each
group uses a single policy, and the number of categories remains limited while captur-
ing the distinct operational constraints and capabilities of different aircraft types.

• Exploring mean field reinforcement learning for large-scale trajectory optimization:
Mean-field reinforcement learning (MFRL) has been successfully applied in various
large-scale multi-agent systems and offers certain advantages over conventional multi-
agent reinforcement learning approaches. By approximating the interactions among
agents through a representative population distribution, MFRL can reduce computa-
tional complexity and improve scalability. These properties make it a promising can-
didate for macro-scale trajectory optimization problems, where thousands of aircraft
must coordinate under both climate and operational constraints. Future work could in-
vestigate the potential of MFRL to enable efficient network-scale climate-optimal flight
planning.

• Large-scale analysis of climate-aware trajectory planning: The results presented in
this thesis are based on specific case studies; therefore, the conclusions drawn may not
be fully generalizable to other traffic scenarios or weather patterns. To comprehen-
sively assess the mitigation potential of climate-aware flight planning, future research
should extend the analysis to large-scale scenarios, for example, through full-year sim-
ulations under diverse traffic and meteorological situations. The framework proposed
in Chapter 6 provides a foundation for conducting such large-scale analyses. This
would facilitate the generation of robust, system-wide insights into the effectiveness of
climate-optimized flight planning for climate impact mitigation.

• Extending the analysis to mixed-fleet operations: This thesis focused on conventional
aircraft powered by kerosene fuel. However, future airspace will comprise a mixed
fleet, including emerging aircraft types and fuels. Mixed-fleet operations, along with
novel operational concepts, require more targeted and strategic allocation of future
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resources and technologies, an approach that is referred to as smart mixed-fleet oper-
ations. Emerging fuels and aircraft technologies typically involve significant costs (in-
cluding production and infrastructure), and thus their integration into fleets will likely
occur gradually. Therefore, maximizing their climate benefits requires strategically al-
locating these limited resources to flights where the greatest mitigation potential can
be achieved. Crucially, this targeted resource allocation approach must be integrated
with macro-scale flight planning. It cannot effectively function as two separate opti-
mization processes, one that allocates technologies to different flights, followed by an-
other performing macro-scale operational optimization. Indeed, allocation decisions
not only influence climate impact but can also significantly affect traffic manageability.
For example, instead of rerouting a kerosene-powered aircraft and potentially caus-
ing congestion, it may be preferable to utilize a hydrogen-powered aircraft that can
maintain a direct, shortest-path trajectory. Therefore, a coupled optimization frame-
work is required to simultaneously allocate the available technologies and fuels and to
plan operationally feasible trajectories, ultimately aiming for the most climate-optimal
performance. This remains an open problem for future research.

• Using constrained MARL for end-to-end network-scale climate-optimal flight plan-
ning without relying on predefined trajectories: The constrained MARL framework
presented in Chapter 6 relies on predefined flight plans, which are modified to meet
climate and traffic manageability objectives. A potential direction for future work
is to extend this approach to plan complete flight trajectories directly from origin-
destination pairs, eliminating the need for initial flight plans. In this setting, the frame-
work would optimize trajectories by minimizing operational costs while enforcing up-
per bounds on climate hotspot crossings and traffic complexity. This extension would
enable a fully integrated, end-to-end flight planning solution capable of delivering op-
erationally feasible, climate-aware trajectories from the outset.

• Extending MARL frameworks to broader aviation applications: The MARL-based
frameworks presented in this thesis were designed for aircraft trajectory optimization
at the planning stage. However, the proposed strategies hold potential for real-time air
traffic applications, where they could serve as advisory tools to support air traffic con-
trollers. Another promising application is flow and capacity management in en-route
airspace, where MARL could be used to dynamically balance demand across sectors
and mitigate airspace complexity under evolving traffic and weather conditions.

Beyond en-route operations, the underlying MARL frameworks, especially the con-
strained MARL approach, are transferable to other trajectory planning domains, such
as unmanned aerial vehicles, where different objectives and constraints must be han-
dled in autonomous and coordinated environments. Additionally, future research
could explore applying these methods to airport operations, including taxi routing
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and gate assignment, where coordinated decision-making can reduce delays, fuel con-
sumption, and emissions, thereby minimizing environmental impact.
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