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Cylindrical Hall Thrusters (CHT)

» CHT replaces the conventional annular chamber of a
traditional Hall effect thruster (HET) with a cylindrical
one.

» This configuration eliminates plasma losses on the
inner wall of the annular chamber and improves the
efficiency of small, low-power prototypes.

» Similar working principle of a classical of a HET but
notably with a more axial magnetic field (similar to a

PhD Motivation

This thesis seeks to advance the understanding of key design parameters in
unconventional HET prototypes, focusing on low-power CHTs and high-
power NHTs. Its objectives are organized into four main blocks:

] State of the art and familiarization with HYPHEN. Study and understand
the main challenges associated with unconventional HET as well as the
current situation of the HYPHEN simulation code [2].

1 Modeling of the CHT. Numerical simulations of the CHT prototype
developed by EP2 using HYPHEN to identify sources of inefficiencies and

magnetic nozzle). FIG. 1: Picture of the ignited CHT with xenon [1]. design parameters that enable optimal performance.
» Prototype developed at EP2. . [ Development of HYPHEN-CM. Implementation of a Cylindrical Mesh in
Neutrals are injected at the anode and HYPHEN to replace MFAM, enabling the simulation of complex
PR e ionized in the chamber. lons are geometries and magnetic topologies, such as NHTSs.
— accelerated downstream by the anode- J Modeling of the NHT. Numerical simulations of the NHT with HYPHEN-
cathode potential. Electrons, injected CM, analyzing magnetic topology effects on wall loads, erosion, and
¥ at the cathode, ionize neutrals and coupling mechanisms of cathode-anode in the near plume.
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neutralize the ion beam downstream.

FIG. 2: Sketch of the CHT’s chamber and near plume regions.

Nested Hall Thruster (NHT)

HYPHEN-CM

» HYPHEN uses three main modules: I-Module for heavy species, E-
Module for magnetized electrons and S-Module for the interaction of
plasma bulk with the thruster walls. These modules are executed
sequentially within a simulation loop.

» I-module operates on a structured Cylindrical mesh, FIG. 5, uses a
particle-in-cell (PIC) method to solve the dynamics of ions and neutrals.

» E-module solves a quasineutral, drift-diffusion (inertialess)|fluid model
for the magnetized electron population, using a MFAM, FIG. 6.

HYPHEN-CM
|

@ ..‘ Implementation of a cylindrical mesh for the E-Module: -
Ne = ans,
- FIG. 3: Picture of the ignited X3 100-kW class NHT with v Avoid tedious meshing of the MFAM. s#e,n

xenon [3].

v" Enable studies of complex magnetic topologies (NHT). Vje=-V-ji <
Issue to solve: numerical diffusion caused by strong  0=-V L)+ encVé +jo x B+ Fro|+ Fu.

magnetic anisotropy, which MFAM solved.

» NHT = multiple coaxial annular channels sharing a
central cathode; same principle as single-channel HET.

> Better high-power scaling than single-channel HETs,
which become too large for spacecraft [3].

» Independent or joint operation of channels allows
flexible thrust and power control — ideal for deep
space missions.

» Proven with X2 (2x10 kW) and X3 (3-channel, 100 kW-
class) thrusters [3].

FIG. 4: Operation combinations of the X3 NHT channels.
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