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INTRODUCTION

The aim of this thesis is developing new
methodologies to based on Al for vehicle
aerodynamics shape optimization.

Aerodynamics is a crucial discipline in modern
automotive development:

* Fuel Efficiency: Reducing drag minimizes fuel
consumption, crucial for combustion and electric
vehicles.

- Stability and Handling: Managing airflow ensures
predictable behaviour at high speeds.

* Noise Reduction: Aerodynamically optimized
designs reduce wind noise, Iimproving passenger
comfort.

Constrains:
 Aesthetics and design.

« Engineering requirements: cooling, off road
capabillities, cabin space, etc.

« Package

THE OPPORTUNITY

In recent times the development cycles
had shortened, with a need for faster
solutions the integration of Al is being
promoted.




References:
Volkswagen Golf Mk8: ¢, ~ 0.29
BMW 3 Series G20: c, ~ 0.26

WE ARE NOT DOING ANYTHING NEW... i e

Range Rover: ¢, ~ 0.30

1955 - Citroén D5 ¢, ™ 0.36 1989 - Opel Calibra: ¢, = 0.26
/ 1999 - Audi A2: ¢, = 0.25

2020 — Mercedes EQS: ¢, =0.20
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1996 — GM EV1: ¢y =0.195

2013 - Volkswagen XL1 XL1: ¢, = 0.189
1934 - Tetra T77: ¢, ~ 0.36 ‘
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..BUT WE WILL ACCELERATE THE PROCESS




Goal: Integrate ML with 3D CFD to / Ei%’:

optimize aerodynamic performance Optirl X
In road vehicles and deliver the
global optimal solution. v

Final design Geometry modification

WORKFLOW

ﬁ
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3D Flow simulation
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m / Geometry validation

Vehicle to be used: DrivAer model.




\DJOINT
METHOD

Scalable:gradient calculation
independent of number
parameters.

Accurate sensitivity analysis.

Suitable for constrained
optimization.

Requires gradient.
Local optimization.

Solver dependent: need
implement with CFD solver.

High complexity.

Only works with continuous,
differentiable design spaces.

GENETIC
ALGORITHM

Computationally expensive
(requires many evaluations).

Slow convergence
No gradient required.
Global optimization.

Solver independent (black
box).

Handles any type of variable
(discrete choices, non-
differentiable geometries, and
topological changes).

Medium complexity.

Hard to impose constrains.

REINFORGEMENT
LEARNING

Sample inefficiency (requires lots
of data to learn).

Reward design is hard.
Gradient is optional.

Global optimization.

Solver independent (black box).
Adaptive optimization.

Handles sequential decision
problems.

No need for explicit models (can
operate on simulation or
experimental data alone).

Very high complexity.

Hard to impose constrains.




RUN BEFORE WALK...

Initial Challenges

« CFD:
« Simulation convergence issues (Auto CFD, clL)

Mesh generation

« Parametrization and geometry modification:

Difficulties in geometry manipulaion.
_ack of clarity on constraints

mplementation details: need to understand how
narametrizes the geometry (morph? Bezier
curves?)

 Overall, time-consuming evaluations that lead to
slow development.

e [In summary:

High complexity problem.
Plus, integrate ML agent (GA).

WE DO THIS
NOT BECAUSE
IT IS EASY,

BUT BECAUSE
WE THOUGHT

IT WOULD BE EASY

Small steps... Proposed solution:

« Start with a simplified 2D model

» Use a basic airfoil geometry
« Run simulations with a faster, more accessible tool: XFOIL



XFOIL

Open-source program for analyzing and designing subsonic
subsonic airfoils, based on a panel method for inviscid flow

flow coupled with a boundary layer formulation for viscous
viscous effects.

CST

Method for airfoil parametrization that uses class and shape
shape functions to smoothly and efficiently define airfoil
geometry.

HYGO

Hybrid optimization algorithm that combines a linear genetic
genetic algorithm with the Downhill Simplex method to balance
to balance global exploration and local exploitation



HYGO-XFOIL IMPLEMENTATION 2

Initialization

Optimizations can be done: o
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Exploitation: employ the local geometry of the objective function
for rapid cost minimization.



HYGO-XFOIL CHALLENGES

CONSTRAIN THE PROBLEM
?8$8010 Limit CST parameters to boundary the design space.
v = -0.3971
N Cos 37041 Also, improve the output data control overall shape.

" N, = 9.00

Separate study with all NACA 4 and 5 airfoils to understand limits.

EVALUATE THE GOST FUNCTION

Xfoil run until convergency. fail safe N —

implemented. N

Extract data from Xfoll. af
ENSURE VALID AIRFOILS Ensure coefficients are valid: cpand ¢, always ~ -* SN
Airfoil upper and lower surfaces do not intersect positive. uk fl ; b
intersect Define cost function: AP ) )

e — l A d o D
Limit maximum thickness N FTi? —
_ ‘b _ L

Constrain maximum thickness x position ] = c or ] = ST FT;

Avoid sharp edges: smooth continuous surface
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Mission

RESULTS: EXAMPLE OF USAGE
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LESSONS LEARNT

Good overview of the
whole process.

How genetic algorithms

WO K.

Implementation of
different software
together.

Efficient geometry
parametrization.

Define geometrical
constrains and limit the
design space.

Importance of
geometrical validation.

Validate results.
Define cost functions.

Data and file
management.

ONGOING

Implementation of MSES (Multi-
(Multi-element Surface Euler
Euler Solver)

RANS validation.

Public current work in EuroGen
EuroGen 2025

FUTURE WORK

Progress my investigation
towards road vehicle
optimization:

* Integrate vehicle
parametrization using
DrivAerNet++

Investigate other ML
approaches (reinforcement
learning)

EUROGEN 2025

16" ECCOMAS Thematic Conference on

Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications
Lahti, Finland, 16-18, 2025

MULTI-FIDELITY AIRFOIL SHAPE OPTIMIZATION WITH HYBRID
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PLEASE FEEL FREE TO ASK ANY
QUESTION OR GETTING IN TOUCH

| want to thank Isaac Robledo for all his support with Python
and the development of HyGO, and Javier Nieto for his help in
getting me up to speed with CST and Xfoil.

And a special mention to Arnau from BSC for all his patient and
support provided.

ALBERTO VILARINO TARRIO
ALBERTO.VILARINO@ALUMNOS.UC3M.ES
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