

PHD

Complete flow description from combination of incomplete measurements

Candidate

CHEN Junwei

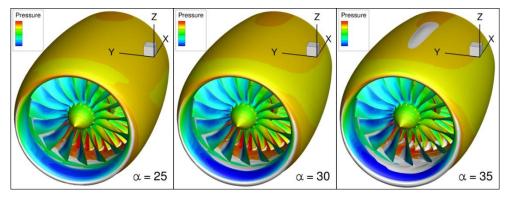
Advisors

Stefano DISCETTI

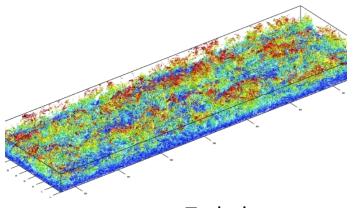
Marco RAIOLA

Aerospace Engineering Research Group, UC3M

MOTIVATION



Aeroacoustics

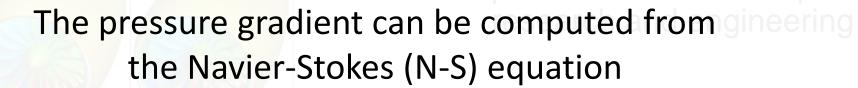


Turbulence

Aerodynamic loads

- Time-resolved velocity and pressure fields are important in research and engineering
- Direct measurements of pressure are limited to point wise or surface measurements

figure from ONERA (up), University of Texas at Auston (downleft), and autosport (downright)



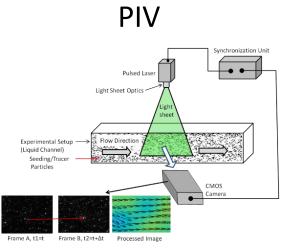
Aeroacoustic
$$\partial \mathbf{u}$$
 pressure are limited to point $\nabla p = -\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nu \Delta \mathbf{u} \right)$ rface measurements

Spatial derivative: space resolution is required

Temporal derivative: time resolution is required

MOTIVATION

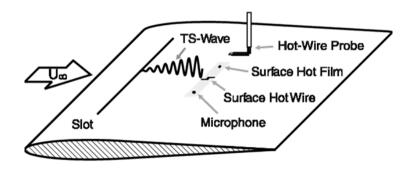
- high cost of time-resolved PIV
- limitation on the frequency of high-speed LASER and cameras



limited sampling rate

high-sensitive cameras + Nd:YAG LASER: up to 15 Hz \sim 0.1 m/s high frequency cameras + Nd:YLF LASER: up to 10k Hz \sim 10 m/s

probes



advantages:

frequency up to 10 MHz → time derivative drawbacks:

not easy to interpret no spatial resolution

MOTIVATION

- high cost of time-resolved PIV
- limitation on the frequency of high-speed LASER and cameras

OBJECTIVE

Obtaining the time-resolved velocity field from the combination of lowspeed PIV and fast probes.

Then integrating the pressure field.

nigh-sensitive cameras + Nd·VAG LASER: frequency un

up to 15 Hz ~ 0.1 m/s

high frequency cameras + Nd:YLF LASER:

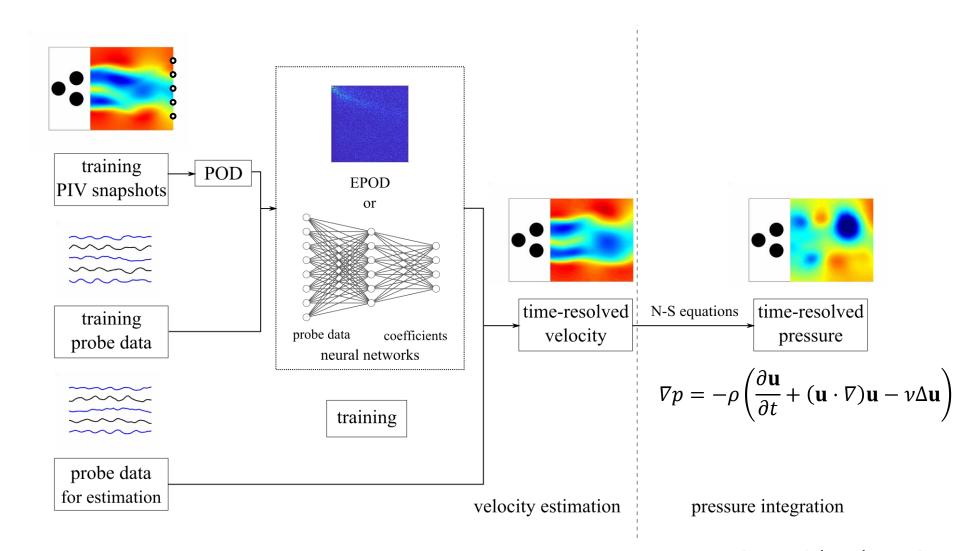
up to 10k Hz ~ 10 m/s

frequency up to 10 MHz \rightarrow time derivative

not easy to interpre

no spatial resolution

DATA-DRIVEN DYNAMIC ESTIMATION

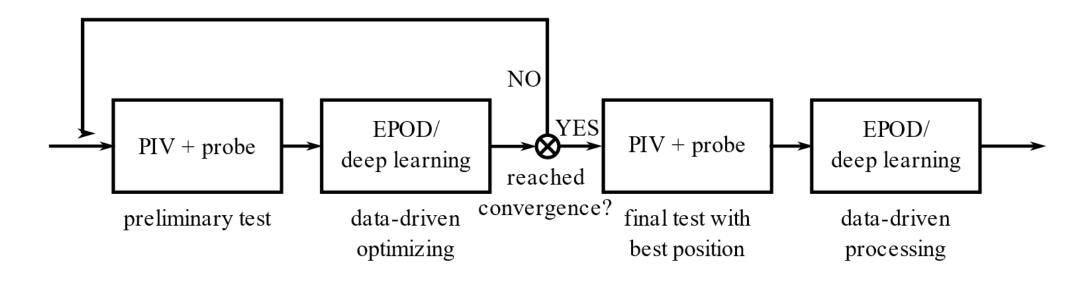


Chen et al. (2022) Exp. Therm. Fluid Sci.

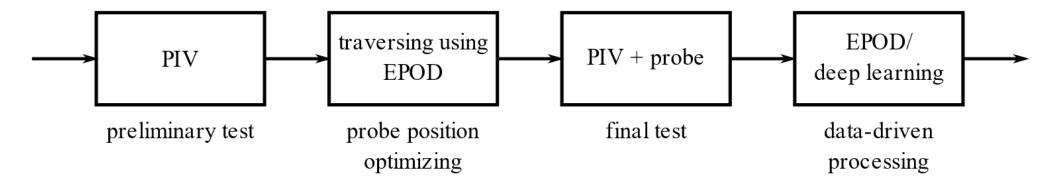
Work 1: Offline optimal sensor positioning

OFFLINE OPTIONAL SENSOR POSITIONING

ONLINE OPTIMIZATION



OFFLINE OPTIMIZATION



OFFLINE OPTIONAL SENSOR POSITIONING

- The offline optimization is sufficient for sensor positioning.
- The accuracy is improved when considering upstream-downstream correlation.
- The positioning from planar PIV field are often acceptable for volumetric measurements.

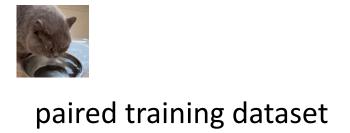
OFFLINE OPTIONAL SENSOR POSITIONING

- Paper published: Chen, Junwei, Marco Raiola, and Stefano Discetti. "An efficient offline sensor placement method for flow estimation." Experimental Thermal and Fluid Science 167 (2025): 111448.
- Code: github.com/erc-nextflow/ sensor_placement_V1
- Data: https://doi.org/10.5281/zenodo.15114116

Work 2: Machine learning with overabundant unlabelled samples

high-repetition-rate field measurements (ideal)

low-repetition-rate field measurements (under limited condition)



high-repetition-rate point measurements

STRATEGY:

- field propagation to generate more labelled samples
- semi-supervised machine learning

Deep learning model f is optimised to predict the POD coefficients

$$f^* = \arg\min_{f} \left\| \mathbf{\Sigma} \left[\mathbf{\Psi}(t_j) - f(\mathbf{p}(t_j)) \right]^{\mathrm{T}} \right\|_{2}, \quad \forall t_j, if \; \mathbf{\Psi}(t_j) \; is \; known$$

 Σ , Ψ from POD, t_i time instant, p probe signal

There exists a unique combination of the temporal derivative of POD coefficients Ψ_t , when the velocity field is temporal derivable. Introducing another deep learning model g to predict Ψ_t

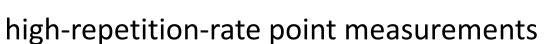
$$g^* = \arg\min_{g} \left\| \sum_{k=1}^{\infty} \left[\frac{f(p(t_{j+k})) - f(p(t_{j-k}))}{t_{j+k} - t_{j-k}} - g(p(t_j)) \right]^{T} \right\|_{2},$$

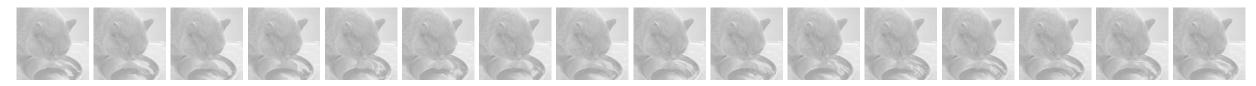
$$\forall t_{j}, \Psi(t_{j}) \text{ is known or unknown}$$

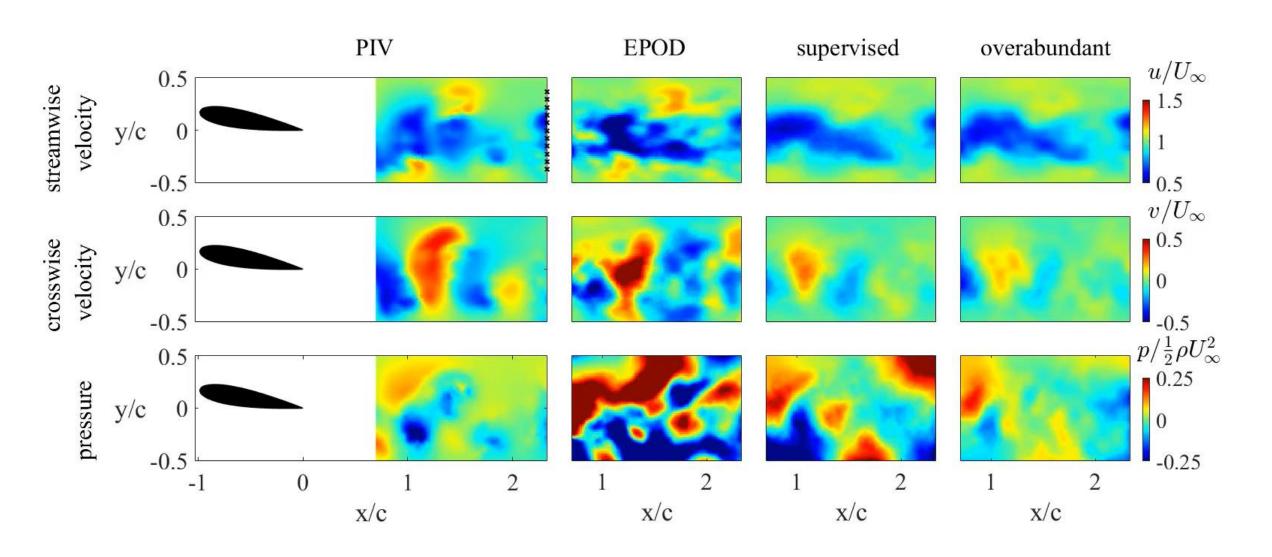
high-repetition-rate field measurements (ideal)

expanded training set

applying semi-supervised machine learning



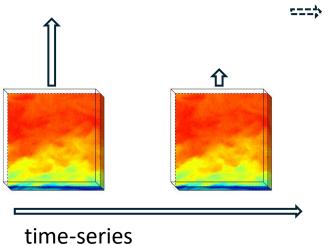


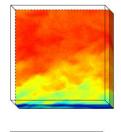


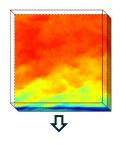
Side work: Advection-based multiframe iterative correction (AMIC)

flow propagation

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{f}(\boldsymbol{u})$$



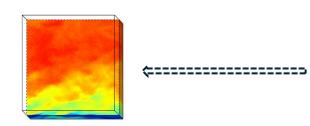




An advection model is used here*

$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u}_c \cdot \nabla) \boldsymbol{u}'$$

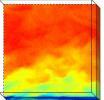
* de Kat & Ganapathisubramani (2012)

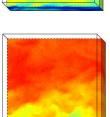


4---

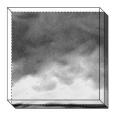
nextfiew Control Indicated Internal Control

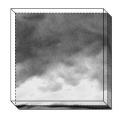
The filter will be applied through the corresponding position of original and propagated frames. reducing the detail loss

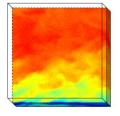




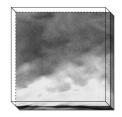
$$\frac{\partial u}{\partial t} = f(u)$$



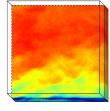


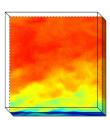




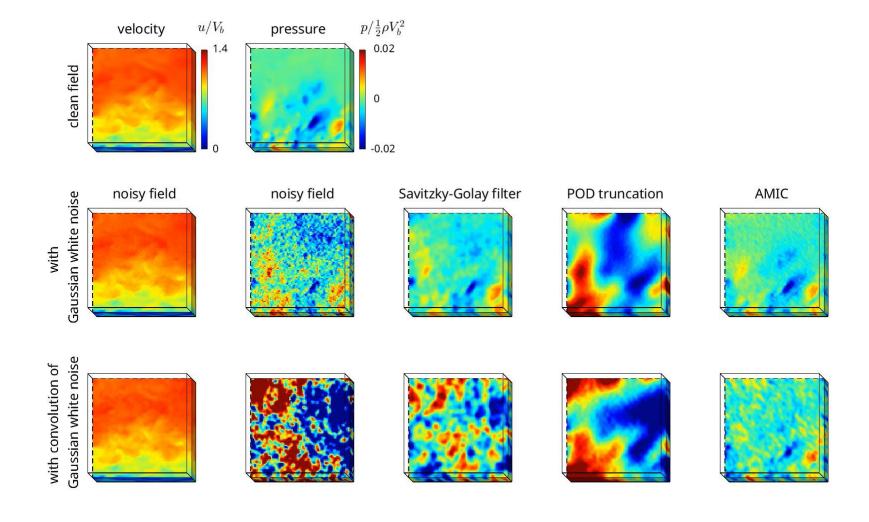


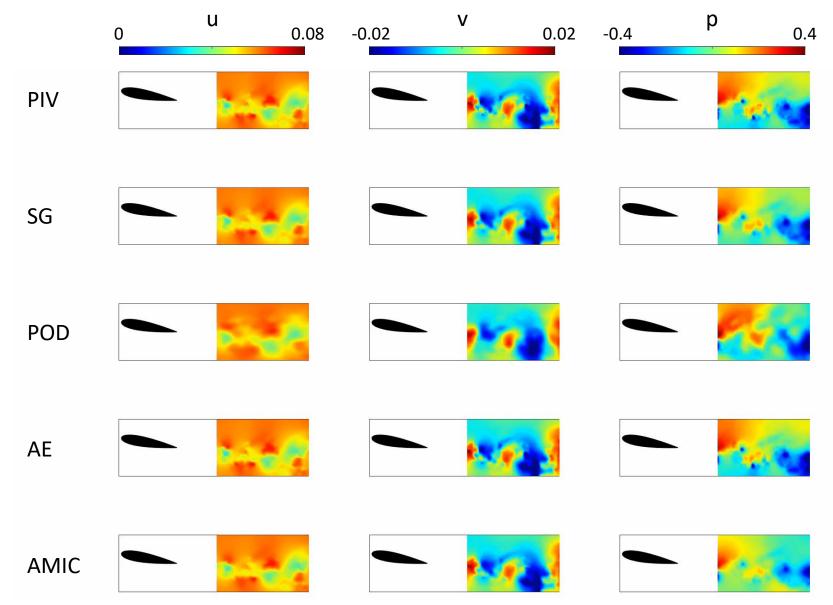
iterative: this procedure will be repeated for several times.





Advection-based multiframe iterative correction (AMIC)

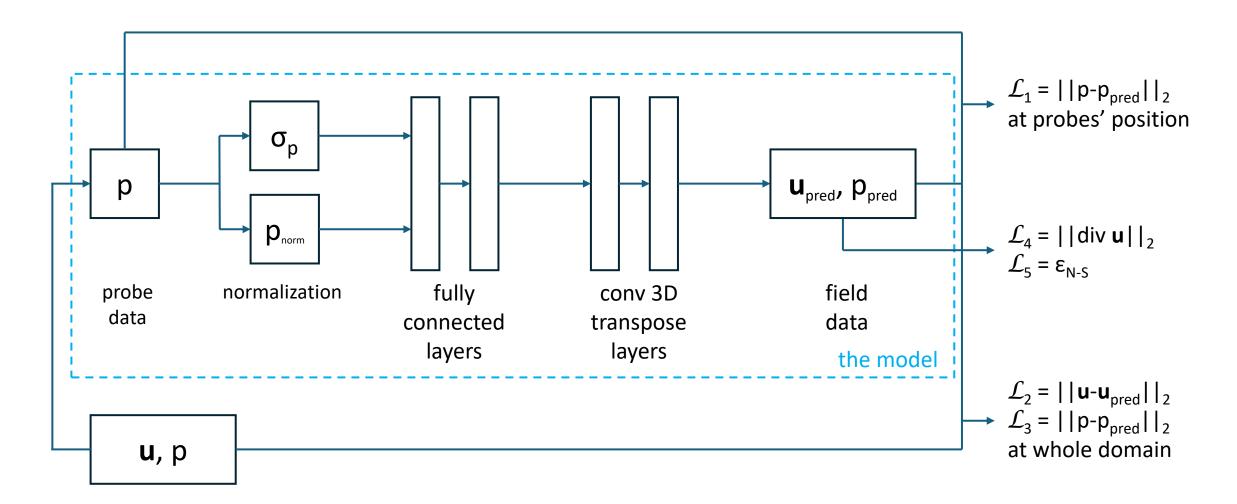




- Paper published: Chen, Junwei, Marco Raiola, and Stefano Discetti. "Advection-based multiframe iterative correction for pressure estimation from velocity fields." Experimental Thermal and Fluid Science 164 (2025): 111407.
- Code: github.com/erc-nextflow/AMIC
- Data: https://doi.org/10.5281/zenodo.14752830

research stay
and
submitting thesis

RESEARCH STAY



OUTCOME

Paper published:

- Chen, Junwei, Marco Raiola, and Stefano Discetti. "Advection-based multiframe iterative correction for pressure estimation from velocity fields." Experimental Thermal and Fluid Science 164 (2025): 111407.
- Chen, Junwei, Marco Raiola, and Stefano Discetti. "An efficient offline sensor placement method for flow estimation." Experimental Thermal and Fluid Science 167 (2025): 111448.

conferences:

- 21st International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 08 - 11 July, 2024
- 21st International Symposium on Flow Visualization, Tokyo, Japan, 21-25 June, 2025
- 21st International Symposium on Particle Image Velocimetry, Tokyo, Japan,
 26-28 June, 2025

謝謝觀看! Thanks for your attention! Gracias!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 949085)

