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Control goals:

▶ Drag reduction

▶ Lift increase

▶ Mixing layer control

▶ Noise reduction

▶ Mixing enhancement
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A brief introduction on fluid flow control

[Puri et al. (2018)]

Control goals:

▶ Drag reduction

▶ Lift increase

▶ Mixing layer control

▶ Noise reduction

▶ Mixing enhancement

Control strategies:

▶ Aerodynamic shape optimization

▶ Passive control

▶ Active control

1K. Puri, M. Laufer, H. Müller-Vahl, D. Greenblatt, & S. H. Frankel. (2017). Computations of Active Flow Control Via Steady Blowing Over a NACA-0018
Airfoil: Implicit LES and RANS Validated Against Experimental Data. AIAA 2018-0792, 2018 AIAA Aerospace Sciences Meeting, January 2018.
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Model Predictive Control (MPC): working principle
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Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.
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Model Predictive Control (MPC): working principle

Prediction
(Opponent’s future

moves)

Optimization
(The move I

consider best)

⇓
Action

(my move)
[Mischiati et al. (2017)]
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Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.

Mischiati, M., Lin, HT., Herold, P. et al. Internal models direct dragonfly interception steering. Nature 517, 333–338 (2015).
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Model Predictive Control (MPC): working principle

▶ Working principle: Optimal control problem over a receding horizon with constraints.
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Model Predictive Control (MPC): working principle

▶ Working principle: Optimal control problem over a receding horizon with constraints.

Target

State

Input

M
ea

su
re

Control Optimizer
(model required)

Plant

Challenges of plant modeling:

▶ Multi-dimensional

▶ Chaotic

▶ Nonlinear

▶ Multi-scale

▶ Time delays

▶ Model order reduction
required

▶ Trade-off between accuracy
and efficiency
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Timeline

1st year 2nd year 3rd year

Literature review

▶ Control theory and MPC

▶ Nonlinear system identification

▶ Data-driven methods

MPC applied to
2D laminar flow
(fluidic pinball)

Journal publication
“Self-tuning model predictive
control for wake flows”, JFM

Experimental
validation
(fluidic pinball)
In development...

Journal publication
“Actuation manifold from
snapshots data”, JFM

Research stay
3 months at
CNRS - LISN

MPC for learning
MPC + RL
In development...

Experiment on
lab-scale problem;
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A first control case: fluidic pinball

▶ Wide variety of actuation mechanism and chaotic dynamics

▶ Control goal: drag reduction / lift stabilization

▶ Control actuation: independent rotation of the three cylinders

Deng, N., Noack, B., Morzyński, M., and Pastur, L. (2022). Cluster-based hierarchical network model of the fluidic pinball – cartographing transient and
post-transient, multi-frequency, multi-attractor behaviour. J. Fluid Mech., 934, A24.

L. Marra MPC to turbulent flows 6 / 37



Control approach
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Figure 1: MPC-based control algorithm schematic. Steps for implementing the control
algorithm are shown, including dataset generation, creation of the predictive model using
SINDYc, and parameter tuning. The main block displays the closed-loop MPC scheme,

including also LPR for the reduction of the effects of sensor measurement noise.

where C ∈ R𝑁𝑐×𝑁𝑎 is a diagonal matrix that selects the controllable features of the system176
present in the state vector. The objective is to control the vector 𝒄 so that it follows a certain177
reference 𝒄∗ ∈ R𝑁𝑐 over time as closely as possible. Depending on the type of target to which178
the control is addressed, MPC can be used for setpoint stabilization, trajectory tracking or179
path following (see Raković & Levine 2018, pp.169-198). In this work, we solely address the180
setpoint stabilization problem, as our aim is to stabilize the state vector at a specific point in181
the control space. Accordingly, we treat the reference 𝑐∗ as a time-invariant quantity.182

The implementation of the MPC follows a series of sequential procedures.183
Firstly, the previously defined variables are henceforth defined using a discrete-time vec-184

tor, which is equispaced with a time interval 𝑇𝑠 between each sample. This discrete-time185
representation is essential for determining how often the exogenous input is updated, since186
the exogenous input is assumed to be constant between consecutive time steps of the control.187
The following notation 𝒂 𝑗 will be used to indicate that the variable 𝒂 is being evaluated at188
the time step 𝑡 𝑗 of the control.189

Furthermore, starting from a specified timestep 𝑡 𝑗 , and using an appropriate model of the190

▶ Sparse Identification of Nonlinear
DYnamics (SINDY) for force
modeling

▶ Bayesian optimization (BO) for MPC
hyperparameter selection

▶ Local polynomial regression (LPR) for
noise robustness

Hewing, L., Wabersich, K. P., Menner, M., and Zeilinger,
M. N. (2020). Learning-based model predictive control:
Toward safe learning in control. Annu. rev. control robot., 3,
269-296.

Nottingham, Q. J., and Cook, D. F. (2001). Local linear
regression for estimating time series data. Comput. Stat.
Data Anal., 37(2), 209-217.
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Results

Hand-selected parameters Automatic parameter selection

Drag reduction
Lift to 0

Drag reduction
Lift to 0

Drag reduction
Lift to sinusoidal
signal
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Model order reduction with ISOMAP
5
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Flow reconstruction for arbitrary aerodynamic parameters

Flow data collection Data-driven manifold learning

Figure 1: Illustration of the methodology for actuation-manifold learning and full-state
estimation. The diagram highlights key steps, from flow data collection to data-driven
actuation manifold discovery (upper section). A neural network, incorporating Kiki

parameters (𝑝1, 𝑝2 and 𝑝3) and sensor information (𝑠1 and 𝑠2), determines the position in
the manifold of a snapshot (𝛾1, 𝛾2, . . . , 𝛾𝑛) and a 𝑘NN decoder is used for the full-state

flow reconstruction.

information about the phase. Cases that do not exhibit vortex shedding collapse into points175
where 𝛾3, 𝛾4 ≈ 0. This is evident from the observation of the projections on the planes 𝛾1−𝛾3176
and 𝛾1 − 𝛾4, both returning a champagne coupe shape, suggesting that smaller values of 𝛾1177
are a prerogative of the cases with limit cycle of smaller amplitude.178

This feature also suggests that 𝛾1 is correlated with the boat tailing parameter 𝑝1 and thus179
with the drag coefficient 𝐶𝐷 , as visualized in figure 3. This plot also shows a correlation180
between 𝛾2, the Magnus parameter 𝑝2, and the lift coefficient 𝐶𝐿 . The fifth coordinate181
of the low-dimensional embedding 𝛾5, on the other hand, appears to be correlated with182
the stagnation point parameter 𝑝3 and partially explains the lift produced by the pinball.183
Intriguingly, all ISOMAP coordinates are physically meaningful and allow us to discover the184
three Kiki parameters without human input.185

Another interesting physical interpretation arises observing the manifold section 𝛾1 − 𝛾2.186
This provides insights into the horizontal symmetry of the data. In the figure, semicircles187
repeat, increasing in number as 𝛾1 increases. Within each of them, 𝑏1 varies from −3 to 3,188
while 𝑏2 and 𝑏3 remain fixed. The branches symmetrically positioned with respect to the189
axis 𝛾2 = 0 are associated with symmetric actuation 𝑏2 and 𝑏3.190

The low-dimensional embedding, being the result of the eigenvector decomposition of191
the double-centered squared-geodesic distance matrix, is made of orthogonal vectors. While192
this might represent a disadvantage to other autoencoders (Otto & Rowley 2022), this also193
allows projecting the snapshots on this basis and obtaining spatial modes that can be used194
to corroborate the physical interpretation of the manifold coordinates. The 𝑗 th spatial mode195

▶ Interpretable low-dimensional
manifold of controlled flows

▶ Accurate flow estimation
using a limited number of
sensors for control
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Learning from MPC

Training a policy from MPC via Imitation and Reinforcement Learning (RL) strategies.

Strategic goals:
▶ Safe and efficient learning
▶ Real-time (fast) control in experiments
▶ Generalization beyond MPC horizon
▶ Scalability to complex systems

Source: Dettmers T. (2016) Deep Learning in a
Nutshell: Reinforcement Learning, NVIDIA.

L. Marra MPC to turbulent flows 12 / 37
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Contributions
▶ Journal articles and code/datasets

✓ Marra L., Meilán-Vila A., Discetti S. Self-tuning model predictive control for wake flows. Journal of Fluid
Mechanics. 2024; 983:A26. 10.1017/jfm.2024.47 (Dataset available in Zenodo and code available in GitHub).

✓ Marra L., Cornejo-Maceda G. Y., Meilán-Vila A., Guerrero V., Rashwan S., Noack B. R., Discetti S., Ianiro A.
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✓ Chang H., Marra L., Cornejo Maceda G. Y., Jiang P., Chen J., Liu Y., Hu G., Chen J., Ianiro A., Discetti S.,
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Some additional slides...



Self-tuning model predictive control for wake flows



Sparse Identification of Nonlinear DYnamics
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MPC results: ideal measurements

Output control mechanism

▶ Boat-tailing (drag reduction)

▶ Phasor control (lift stabilization)

Results

▶ E(Cd) reduced by 43.5%

▶ σ(Cd ) reduced by 81.3%

▶ σ(Cl) reduced by 3.89%

▶ E(Cl) ≈ 0

Li, Y., Cui, W., Jia, Q., Li, Q., Yang, Z., Morzyński, M., and Noack, B. R. (2022). Explorative gradient method for active drag reduction of the fluidic pinball and
slanted Ahmed body. J. Fluid Mech., 932, A7.
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MPC cost function

MPC cost function:

JMPC(b) =
∑wp

k=0
∥ĉj+k|j∥

2
Q +

∑wp

k=1

(
∥bj+k|j∥2

Rb
+ ∥∆bj+k|j∥2

R∆b

)
wp prediction horizon length

▶ ĉj+k|j predictions of c in timesteps t j+k , k = 1, . . . ,wp conditioned to measure in t j

▶ ∥x∥2
H = x ′Hx

Q, Rb,R∆b positive and semi-positive definite diagonal weight matrices

L. Marra MPC to turbulent flows 21 / 37



MPC cost function

MPC cost function:

JMPC(b) =
∑wp

k=0
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Tuning parameters cost function

Running the control algorithm for Nt timesteps, global control performance can be assessed by the
following cost function:

JBO(η) =
1
Nt

∑Nc

k=1

∑Nt

j=1

(
c̃ j

k (η)
)2

Parameters in η are optimized by maximizing control
performance the minimizing JBO .
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Bayesian optimization

The tuning problem is explained by the following optimization problem:

ηopt = arg min
η∈H

JBO(η)

▶ H ⊂ RNη is a hyper-rectangle of the type η ∈
[
ηmin,ηmax]

▶ JBO behaves as a "black box" function
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JBO(η)

▶ H ⊂ RNη is a hyper-rectangle of the type η ∈
[
ηmin,ηmax]

▶ JBO behaves as a "black box" function

Bayesian optimization builds a
probabilistic model of JBO

▶ Gaussian process (GP) is used

Given the data the posterior
distribution is updated

An acquisition process iteratively
proposes a new sampling point in the
domain in order to find the minimum.

Balance between exploration and
exploitation.
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Results: tuning and noise effects
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Actuation manifold from snapshots data



Methodology flowchart
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Figure 1: Illustration of the methodology for actuation-manifold learning and full-state
estimation. The diagram highlights key steps, from flow data collection to data-driven
actuation manifold discovery (upper section). A neural network, incorporating actuation
parameters (𝑝1, 𝑝2 and 𝑝3) and sensor information (𝑠1 and 𝑠2), determines ISOMAP
coordinates (𝛾1, 𝛾2, . . . , 𝛾𝑛) and a 𝑘NN decoder is used for the full-state flow reconstruction.

the low-dimensional embedding to reproduce the geodesic distances in the high-dimensional174
space. The dimension 𝑛 of the low-dimensional embedding is typically determined by175
identifying an elbow in the residual variance plot.176

After the actuation manifold identification, the objective is to perform a flow reconstruction177
from the knowledge of a reduced number of sensors and actuation parameters. This process is178
carried out in two steps. Firstly, a regression model is trained to identify the low-dimensional179
representation of a snapshot. Specifically, we employ a fully connected multi-layer perceptron180
(MLP) to map the actuation parameters and sensor information to the ISOMAP coordinates.181
It is possible to employ as network input either the actuation or the Kiki parameters. In182
the following we employ the Kiki parameters since we deem them more elegant, although183
this does not substantially affect the results, being the Kiki parameters a linear combination184
of the actuation parameters. Secondly, a decoding procedure is conducted through linear185
interpolation among a fixed number (denoted by 𝑘𝑑) of nearest neighbours, following the186
methodology established by Farzamnik et al. (2023). An alternative to this mapping is187
presented in appendix A, where a two-step 𝑘NN regression with distance-weighted averaging188
is employed. It is important to clarify that the decoding step is applicable only for interpolation189
cases, meaning for actuation cases that fall within the limits explored during the dataset190
generation, i.e., |𝑏𝑖 | < 3, ∀𝑖 = 1, 2, 3, being | · | the absolute value.191
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ISOMAP

▶ Snapshots data ui , i = 1, . . . ,M

▶ Build the euclidean distance matrix DE among
snapshots

▶ Approximate geodesic distance matrix DG:

Construct neighbourhood graph
Compute shortest path across
graph (e.g., Floyd-Warshall
method)

▶ Project data into low-dimensional space (MDS)
retaining n coordinates

A B

Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
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Actuation manifold sections
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Figure 2: Panel (a) displays the Frobenius norm of the geodesic distance matrix plotted
against the number of neighbors employed in Floyd’s algorithm. Results of the manifold
obtained for 𝑘𝑒 = 40 are presented in panels (b) and (c). The former illustrates the residual
variance of the first 10 ISOMAP coordinates, while the latter showcases all possible
manifold sections identified by the first five coordinates.
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Figure 3: Three-dimensional projections of the manifold color-coded with physical and
actuation parameters. The first (boat tailing) and second (Magnus) actuation parameters
are plotted against lift and drag coefficients to understand physical control mechanisms.
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Actuation manifold interpretation
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Figure 2: Panel (a) displays the Frobenius norm of the geodesic distance matrix plotted
against the number of neighbors employed in Floyd’s algorithm. Results of the manifold
obtained for 𝑘𝑒 = 40 are presented in panels (b) and (c). The former illustrates the residual
variance of the first 10 ISOMAP coordinates, while the latter showcases all possible
manifold sections identified by the first five coordinates.
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Figure 3: Three-dimensional projections of the manifold color-coded with physical and
actuation parameters. The first (boat tailing) and second (Magnus) actuation parameters
are plotted against lift and drag coefficients to understand physical control mechanisms.
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ISOMAP pseudomodes
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Figure 4: LIC representations of the normalized actuation modes. The shadowed contour
represents the local velocity magnitude of the pseudomodes.

𝝓 𝑗 , 𝑗 = 1, . . . , 𝑛 is a linear combination of the snapshots 𝒖𝒊 , i.e. ∥𝜸̃ 𝑗 ∥𝝓 𝑗 =
∑𝑀

𝑖=1 𝛾̃𝑖 𝑗𝒖𝒊 .The196
first five ISOMAP modes are visualized in figure 4 with a line integral convolution (LIC,197
Forssell & Cohen 1995) plot superimposed on a velocity magnitude contour plot. The198
visual observation of the modes confirms the interpretation of the physical meaning of the199
coordinates of the low-dimensional embedding. Three modes, namely 𝝓1, 𝝓2, and 𝝓5 are200
representative of the actuation parameters. The first ISOMAP mode is characterized by the201
presence of a jet (wake) downstream of the pinball due to boat tailing (base bleeding).202
The second ISOMAP mode represents a circulating motion around the pinball, responsible203
of positive or negative lift, depending on the circulation direction. The fifth mode is204
characterized by a net circulation around the front cylinder, determining the position of205
the front cylinder stagnation point, if added to the mean field. The two spatial modes 𝝓3 and206
𝝓4, instead, have the classical aspect of vortex shedding modes. Together, they describe the207
wake response to actuation parameters (far field), providing information on the intensity and208
phase of vortex shedding.209

4.2. Flow estimation210

For the identification of the position of a flow field snapshot within the manifold, we employ211
a fully connected multi-layer perceptron. The mapping is done having as inputs a limited212
number of sensors and the Kiki parameters. The latter provides comprehensive knowledge of213
the coordinates representing the near field (𝛾1, 𝛾2, and 𝛾5). Far-field coordinates (𝛾3 and 𝛾4)214
identification is helped by having sensors providing information on the intensity and phase215
of vortex shedding. Two different alternatives are proposed here. In the first, we utilize the216
lift coefficient and its one-quarter mean shedding period delay (we refer to this case with217
MLP1). In the second, crosswise components of velocity are measured at two positions in218
the wake, specifically at points 𝒙1 = (8, 1) and 𝒙2 = (10, 1) (MLP2). The characteristics of219
the employed networks are summarized in table 1. The training of the neural networks is220
performed with the dataset used to construct the data-driven manifold randomly removing all221
snapshots related to 10% of the actuation cases and using the remaining ones for validation.222

To test the accuracy of flow estimation, we use 22 additional simulations with randomly-223
selected actuation parameters, not present in the training nor the validation dataset. As done224
for the training dataset, the last 20 c.u. are sampled every 1 c.u. for a total of 440 snapshots. The225
neural networks are used to identify the positions of these cases within the low-dimensional226
embedding and then the 𝑘NN decoder is applied to reconstruct the full state. In the decoding227
phase, we select 𝑘𝑑 = 200 neighboring points to minimize the full state reconstruction error228
through a brute force approach on the validation dataset. A reason why this parameter is229

p1 = b3−b2
2 p2 = b1 + b2 + b3 p3 = b1

(Base-bleeding/boat-tailing) (Magnus) (Stagnation point control)
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Decoding performance

0 0.2 0.4 0.6 0.8

jjb i ! bj1(i)jj

0.9

0.95

1

S
C
(u

i;
û
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MPC, imitation and reinforcement learning



The idea

The ‘expert’
(MPC)

, Safe

, Greedy optimal

/ Computational cost

The ‘student’
(NN policy)

/ Unsafe training with reinforcement learning (RL)

, Faster (direct mapping)

, Less data hungry after imitation
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The method

Control authority
on expert

(MPC)

Experience
replay buffer

Parallel policy
learning

Control
authority on

trained policy

Policy
fine-tuning

(RL)

Train the policy: Initially BC (supervised learning)

Rollout policy: Deploy policy on plant model (short
time) and ask feedback to expert on the final state

Aggregate data: Add new state-action pairs to the
experience buffer

Retrain: Train the model on the updated experience
buffer
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Test case

Kuramoto–Sivashinsky (KS) equation:

∂x
∂t + x ∂x

∂ξ = −∂2x
∂ξ2 − ∂4x

∂ξ4 + ϕ

▶ State x , time t , spatial coordinate ξ

▶ Domain in [0, L], with L = 22

▶ x(ξ, t) = x(ξ + L, t)

▶ Sampling on 64 collocation points

▶ ϕ is a 4-dimensional Gaussian
supported actuation

Learning task:

Guide the KS solution from a random initial condition to the unstable equilibrium point E3.
Failure → not reaching the target within a threshold in an episode.

Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal
Society A, 475(2231), 20190351.
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The expert

* Plant model from data-driven Operator Inference with POD on 17 modes and model dependencies up to 3rd

polynomial order

** MPC with full-state feedback

Kramer, B., et al. (2024). Learning nonlinear reduced models from data with operator inference. Annual Review of
Fluid Mechanics, 56(1), 521-548.
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The student

W/o policy rollouts on plant model...
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∗ Policy with sparse sensors feedback (8 equispaced sensors)
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