

Model predictive control applied to turbulent flows

PhD candidate: Luigi Marra¹

Thesis advisors: Stefano Discetti¹, Andrea Meilán-Vila²

¹ Department of Aerospace Engineering, UC3M

² Department of Statistics, UC3M

Doctoral meetings, June 3, 2025

[Puri et al. (2018)]

¹K. Puri, M. Laufer, H. Müller-Vahl, D. Greenblatt, & S. H. Frankel. (2017). Computations of Active Flow Control Via Steady Blowing Over a NACA-0018 Airfoil: Implicit LES and RANS Validated Against Experimental Data. *AIAA 2018-0792, 2018 AIAA Aerospace Sciences Meeting*, January 2018.

Control goals:

- ▶ Drag reduction
- ▶ Lift increase
- ▶ Mixing layer control
- ▶ Noise reduction
- ▶ Mixing enhancement

[Puri et al. (2018)]

¹K. Puri, M. Laufer, H. Müller-Vahl, D. Greenblatt, & S. H. Frankel. (2017). Computations of Active Flow Control Via Steady Blowing Over a NACA-0018 Airfoil: Implicit LES and RANS Validated Against Experimental Data. *AIAA 2018-0792, 2018 AIAA Aerospace Sciences Meeting*, January 2018.

Control goals:

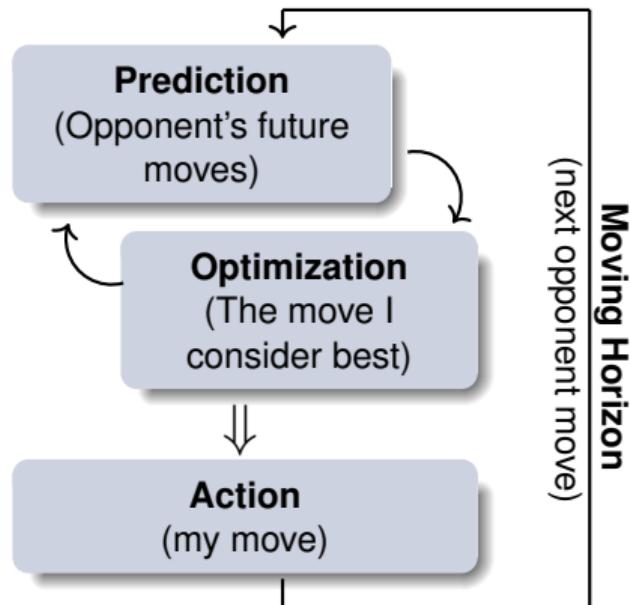
- ▶ Drag reduction
- ▶ Lift increase
- ▶ Mixing layer control
- ▶ Noise reduction
- ▶ Mixing enhancement

Control strategies:

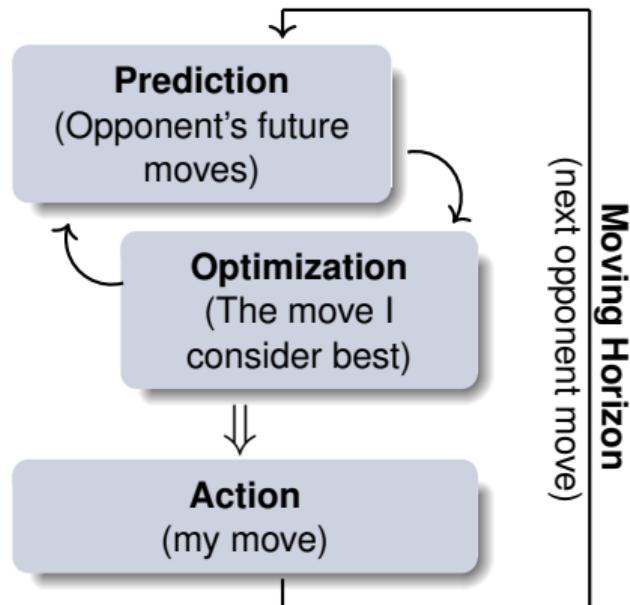
- ▶ Aerodynamic shape optimization
- ▶ Passive control
- ▶ Active control

[Puri et al. (2018)]

¹K. Puri, M. Laufer, H. Müller-Vahl, D. Greenblatt, & S. H. Frankel. (2017). Computations of Active Flow Control Via Steady Blowing Over a NACA-0018 Airfoil: Implicit LES and RANS Validated Against Experimental Data. *AIAA 2018-0792, 2018 AIAA Aerospace Sciences Meeting*, January 2018.



Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.

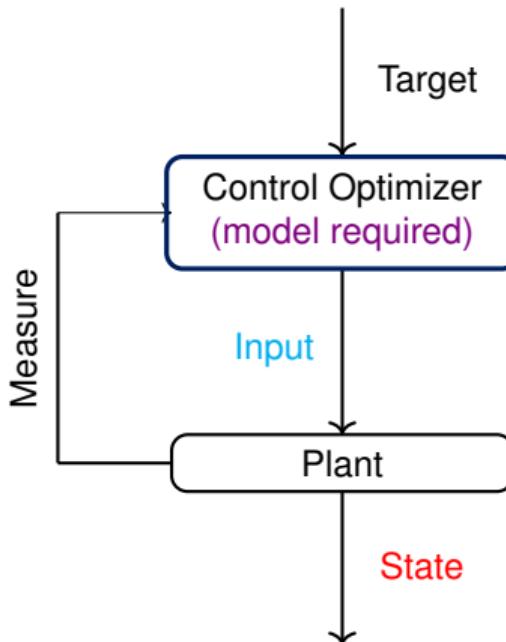


[Mischiati et al. (2017)]

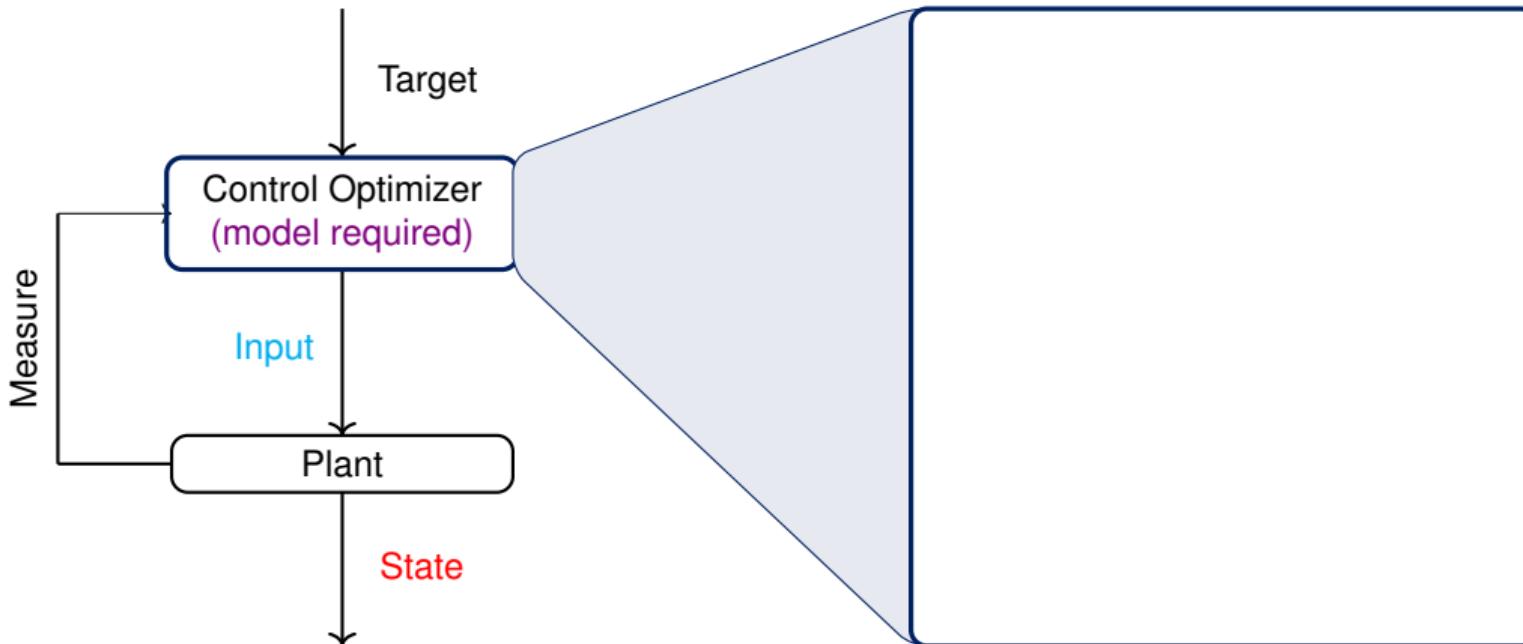
Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.

Mischiati, M., Lin, HT., Herold, P. et al. Internal models direct dragonfly interception steering. Nature 517, 333–338 (2015).

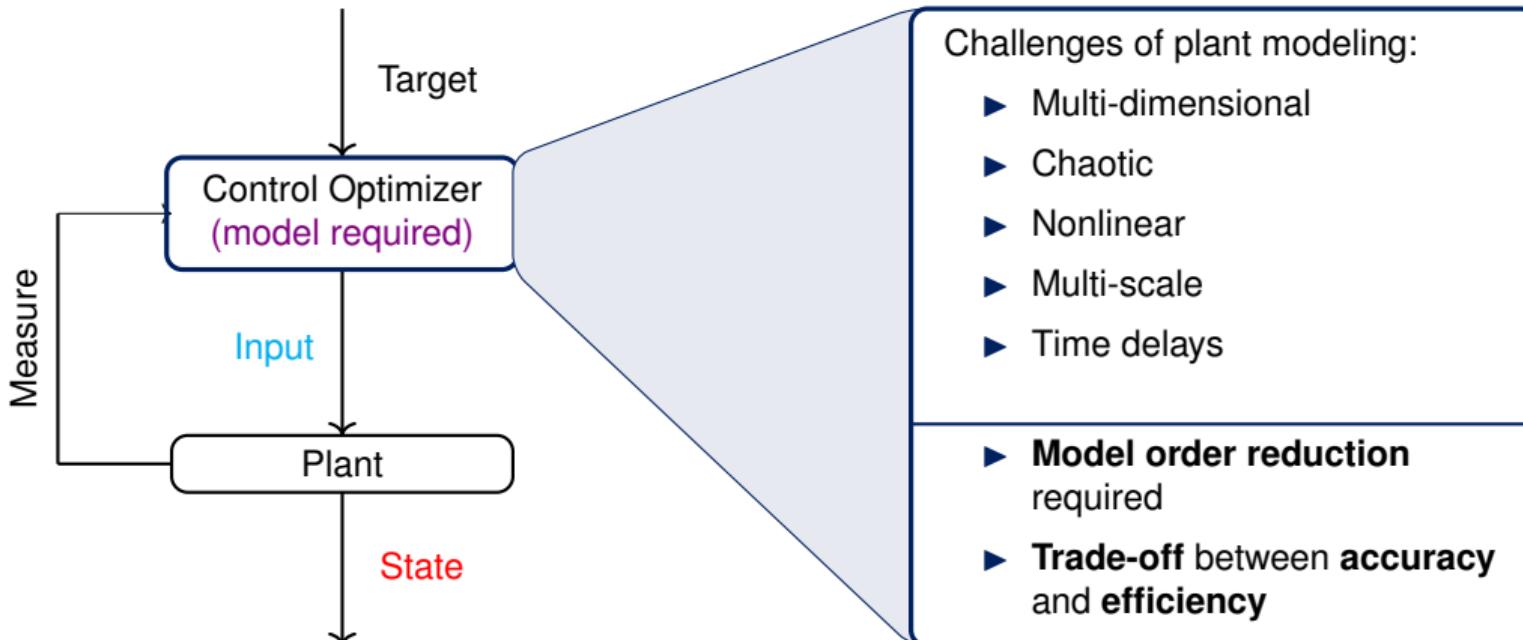
- ▶ **Working principle:** Optimal control problem over a receding horizon with constraints.



- ▶ **Working principle:** Optimal control problem over a receding horizon with constraints.

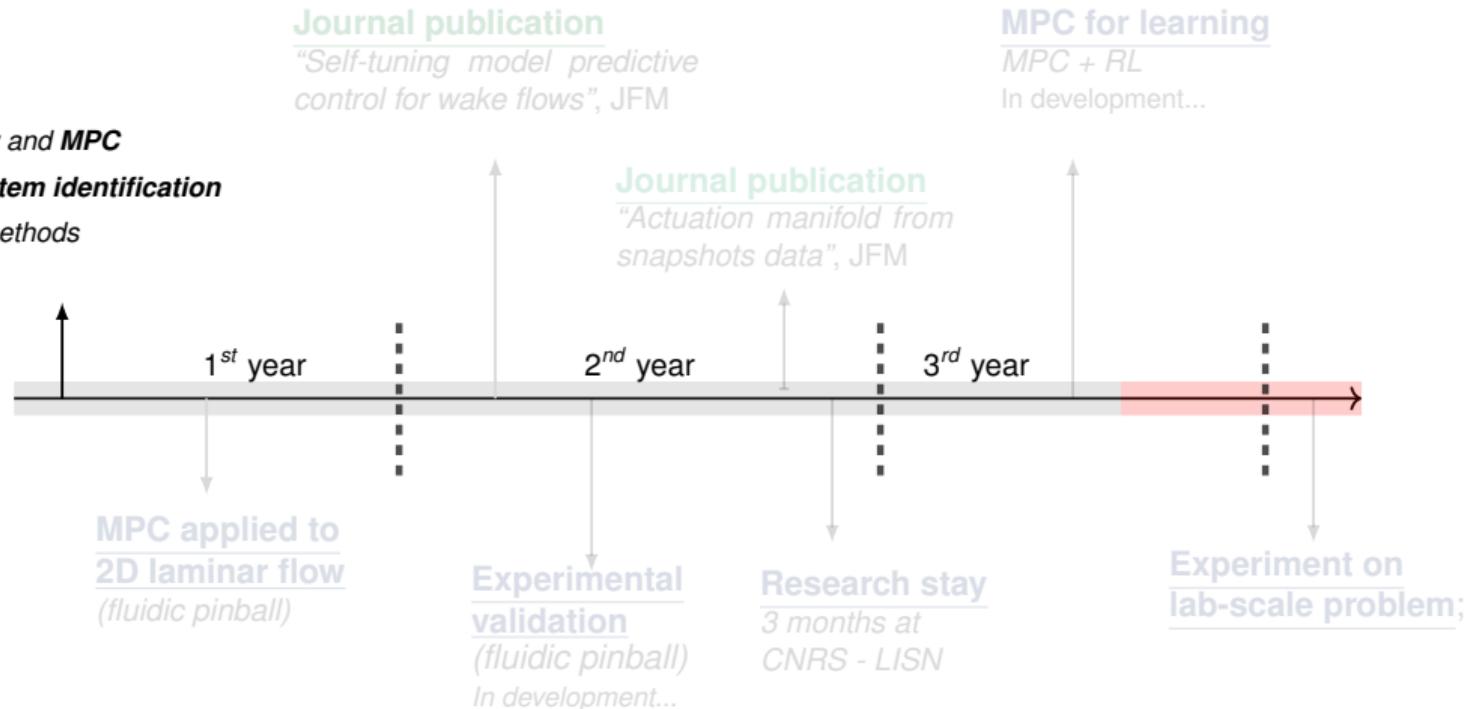


- ▶ **Working principle:** Optimal control problem over a receding horizon with constraints.



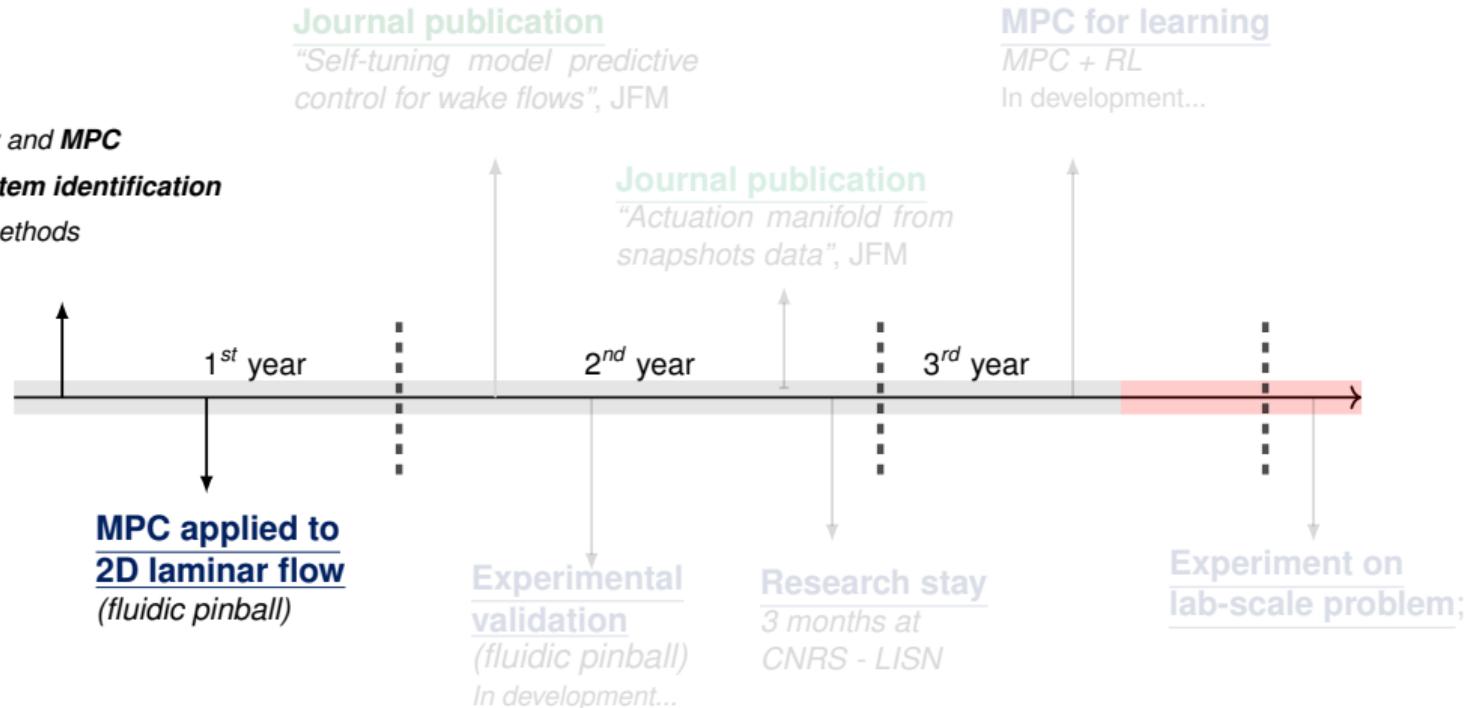
Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*



Literature review

- ▶ Control theory and **MPC**
- ▶ Nonlinear **system identification**
- ▶ Data-driven methods



Literature review

- ▶ Control theory and **MPC**
- ▶ Nonlinear **system identification**
- ▶ Data-driven methods

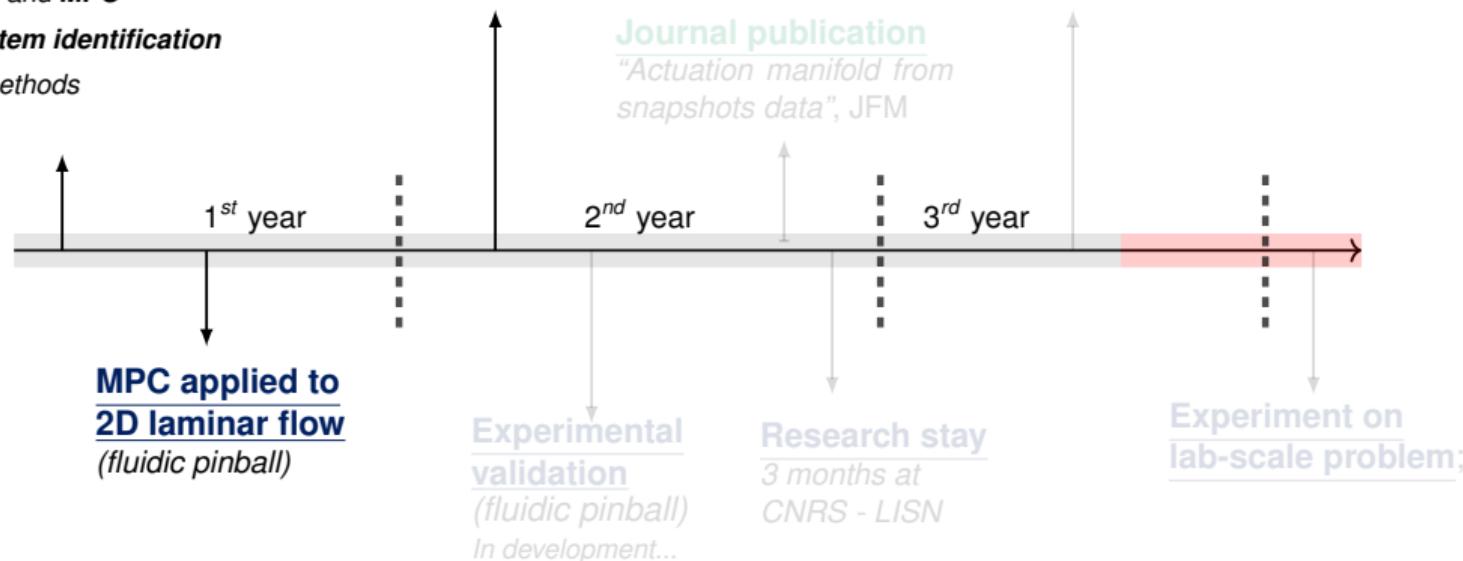
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

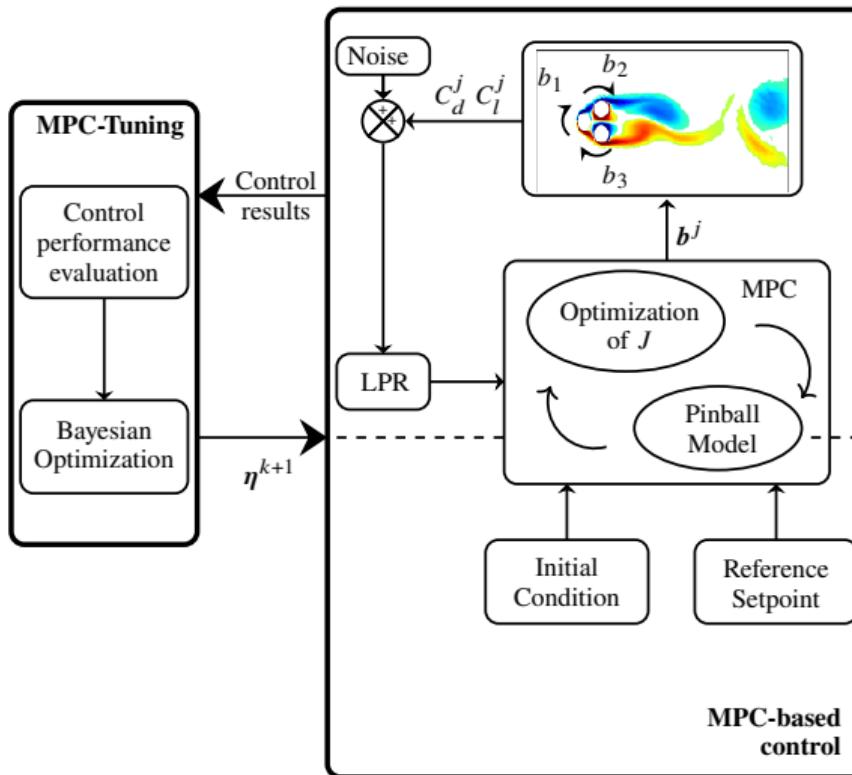
MPC + RL

In development...



- ▶ Wide **variety** of **actuation** mechanism and chaotic dynamics
- ▶ **Control goal:** drag reduction / lift stabilization
- ▶ **Control actuation:** independent rotation of the three cylinders

Deng, N., Noack, B., Morzyński, M., and Pastur, L. (2022). Cluster-based hierarchical network model of the fluidic pinball – cartographing transient and post-transient, multi-frequency, multi-attractor behaviour. *J. Fluid Mech.*, 934, A24.



- ▶ Sparse Identification of Nonlinear DYnamics (**SINDY**) for **force modeling**
- ▶ Bayesian optimization (**BO**) for **MPC hyperparameter selection**
- ▶ Local polynomial regression (**LPR**) for **noise robustness**

Hewing, L., Wabersich, K. P., Menner, M., and Zeilinger, M. N. (2020). Learning-based model predictive control: Toward safe learning in control. *Annu. rev. control robot.*, 3, 269-296.

Nottingham, Q. J., and Cook, D. F. (2001). Local linear regression for estimating time series data. *Comput. Stat. Data Anal.*, 37(2), 209-217.

Hand-selected parameters

Drag reduction
Lift to 0

Automatic parameter selection

Drag reduction
Lift to 0

Drag reduction
Lift to sinusoidal
signal

Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

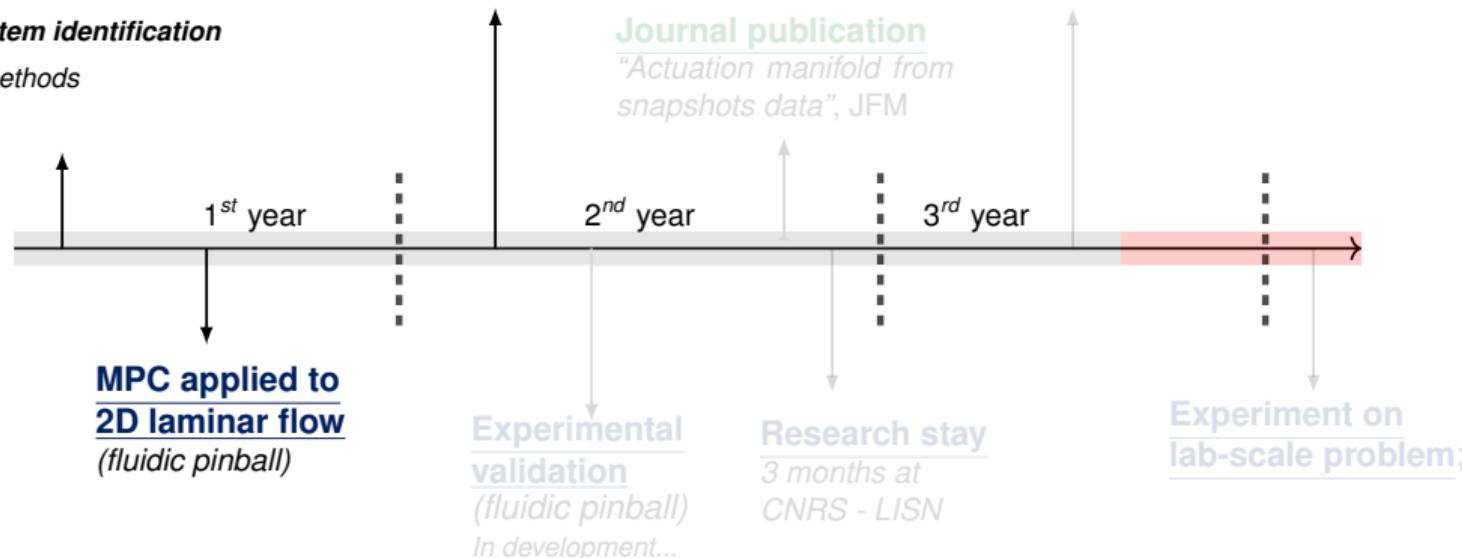
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...



Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

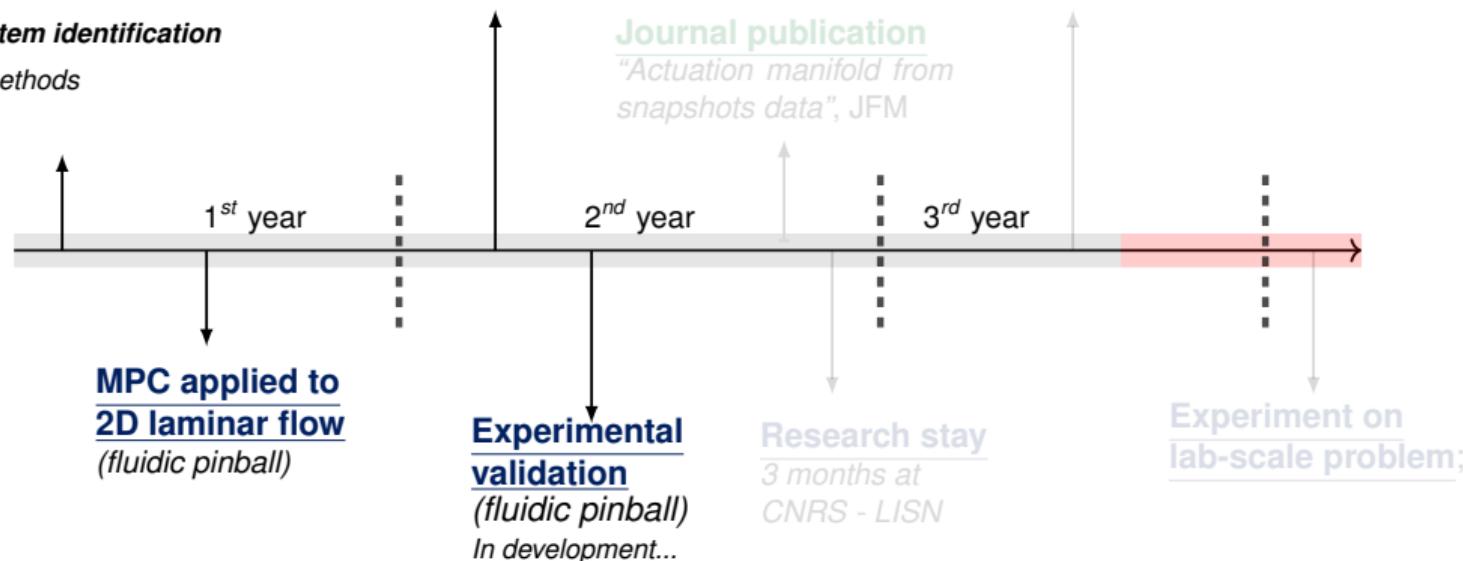
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...



Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

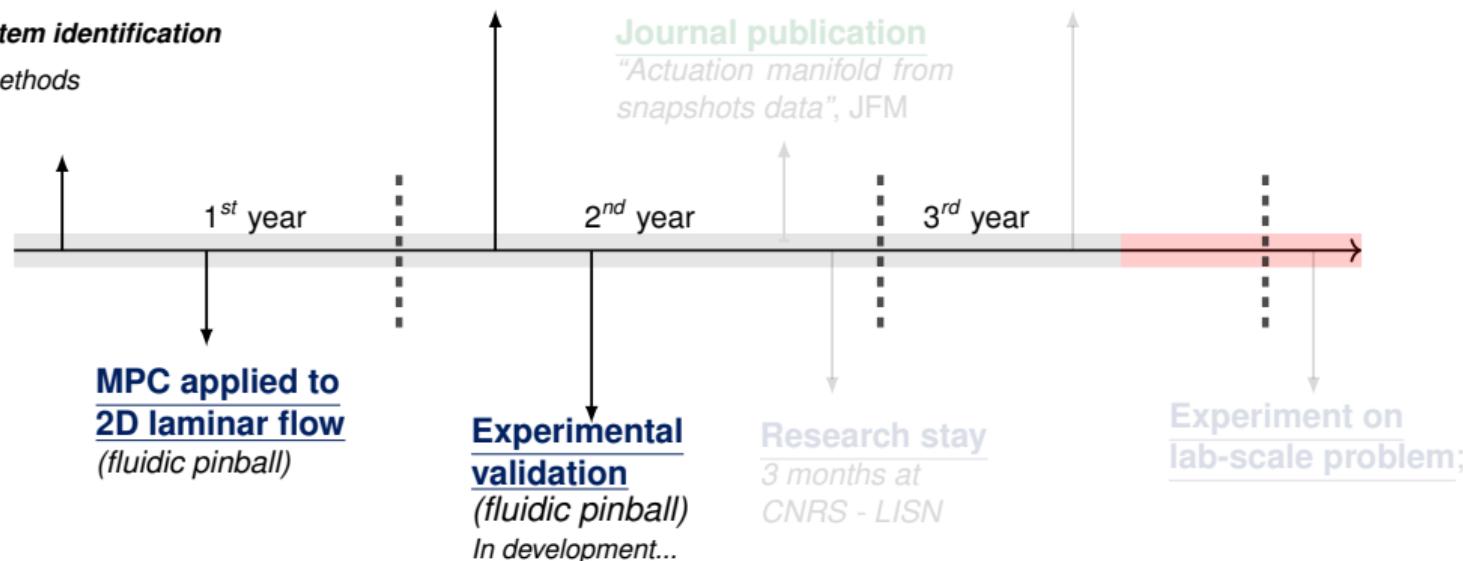
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...



Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

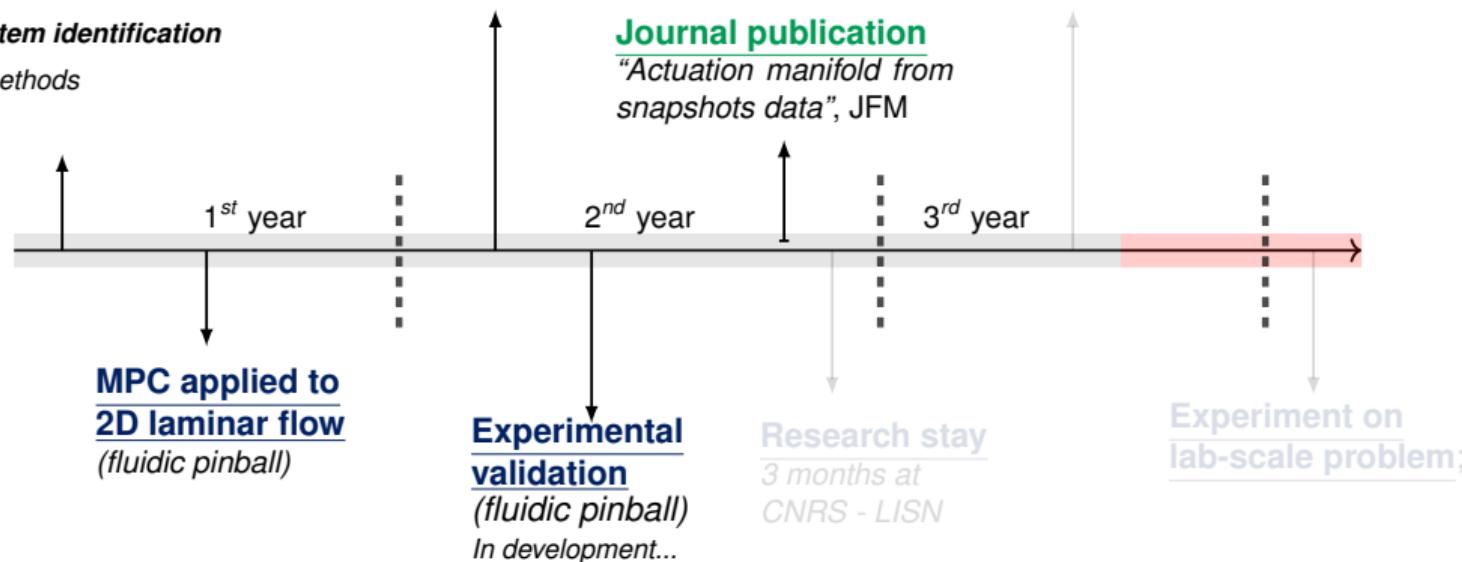
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

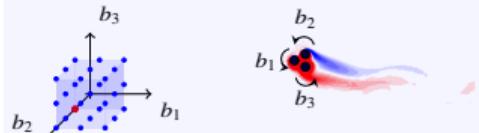
MPC + RL

In development...



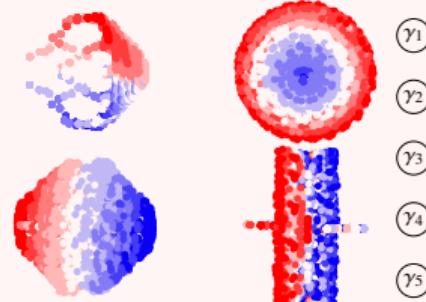
Flow data collection

$$\mathbf{b} = [b_1, b_2, b_3]$$



Data-driven manifold learning

$$\begin{matrix} I \\ S \\ O \\ M \\ A \\ P \end{matrix}$$



Kiki parameters:

$$p_1 = \frac{b_3 - b_2}{2}$$

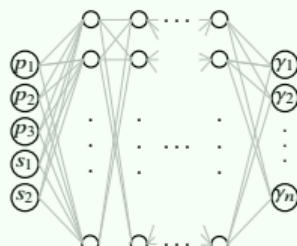
$$p_2 = b_1 + b_2 + b_3$$

$$p_3 = b_1$$

$$\begin{matrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \end{matrix}$$

► **Interpretable** low-dimensional manifold of **controlled flows**

Flow reconstruction for arbitrary aerodynamic parameters



$$\begin{matrix} k \\ N \\ N \end{matrix}$$

► Accurate flow **estimation** using a **limited** number of **sensors** for control

Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

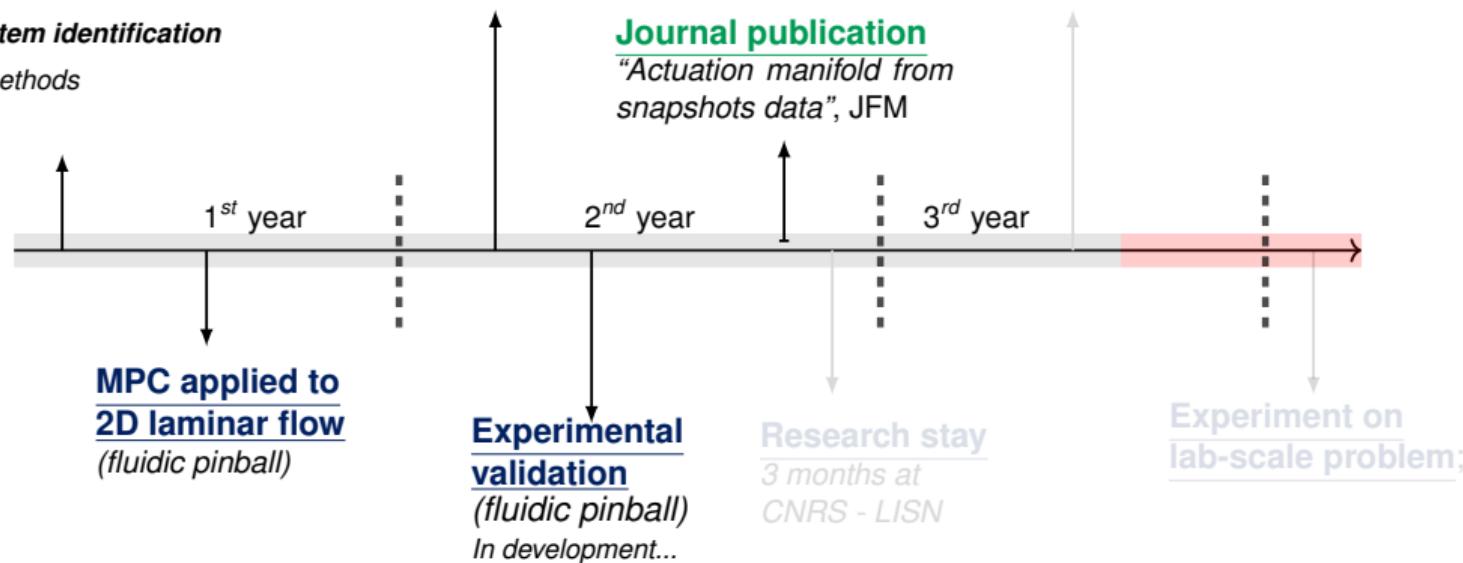
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...



Literature review

- ▶ Control theory and **MPC**
- ▶ Nonlinear **system identification**
- ▶ Data-driven methods

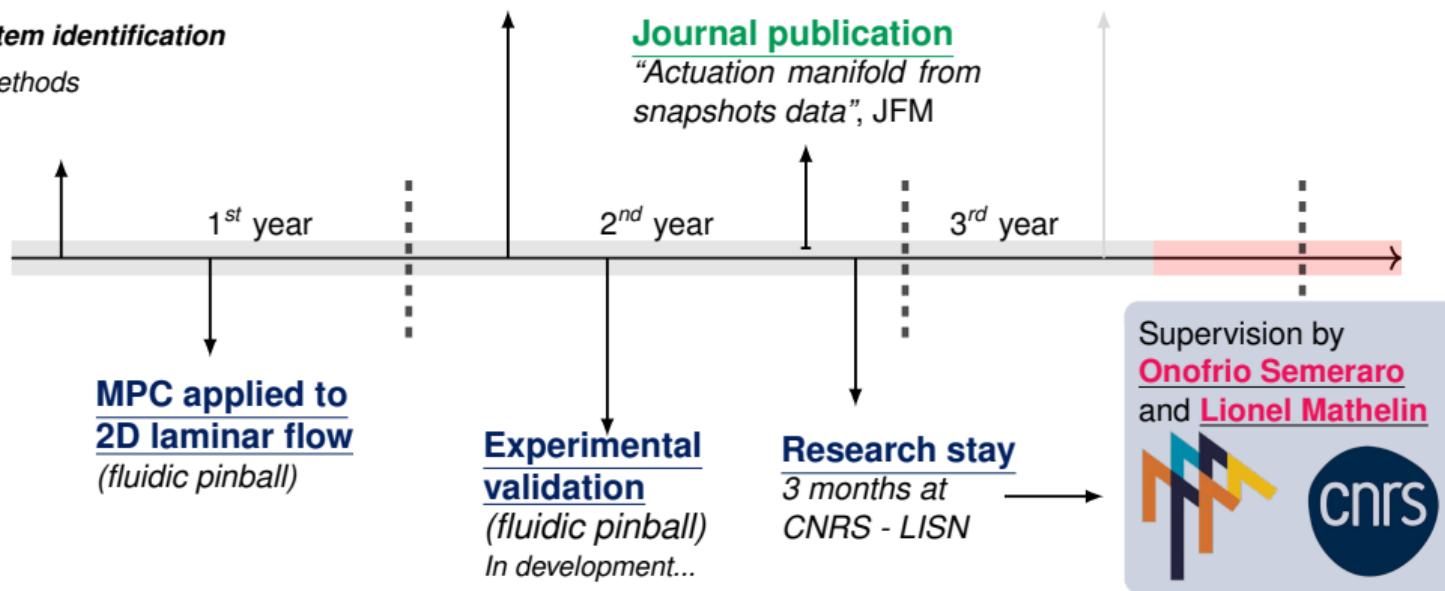
Journal publication

“Self-tuning model predictive control for wake flows”, JFM

MPC for learning

MPC + RL

In development...



Literature review

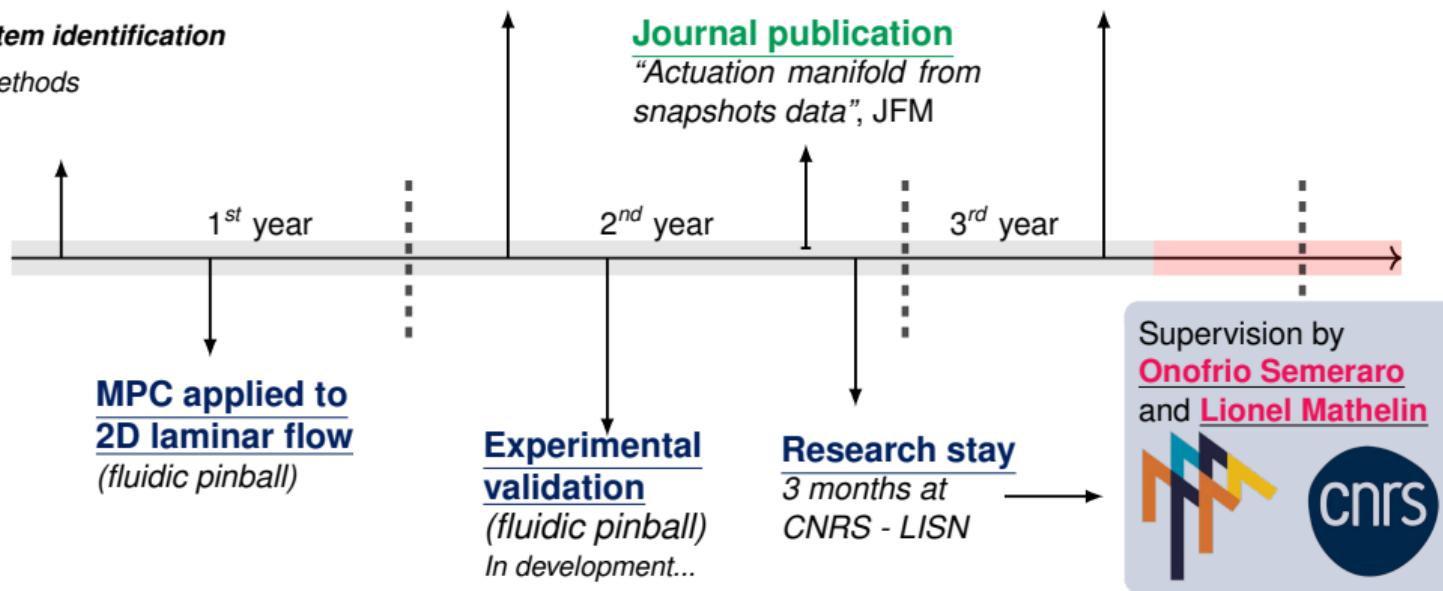
- ▶ Control theory and **MPC**
- ▶ Nonlinear **system identification**
- ▶ Data-driven methods

Journal publication

“Self-tuning model predictive control for wake flows”, JFM

MPC for learning

MPC + RL
In development...



 Training a policy from **MPC** via **Imitation** and **Reinforcement** Learning (RL) strategies.

Strategic goals:

- ▶ **Safe and efficient learning**
- ▶ **Real-time** (fast) control in experiments
- ▶ Generalization **beyond MPC horizon**
- ▶ **Scalability** to complex systems

Source: Dettmers T. (2016) *Deep Learning in a Nutshell: Reinforcement Learning*, NVIDIA.

Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

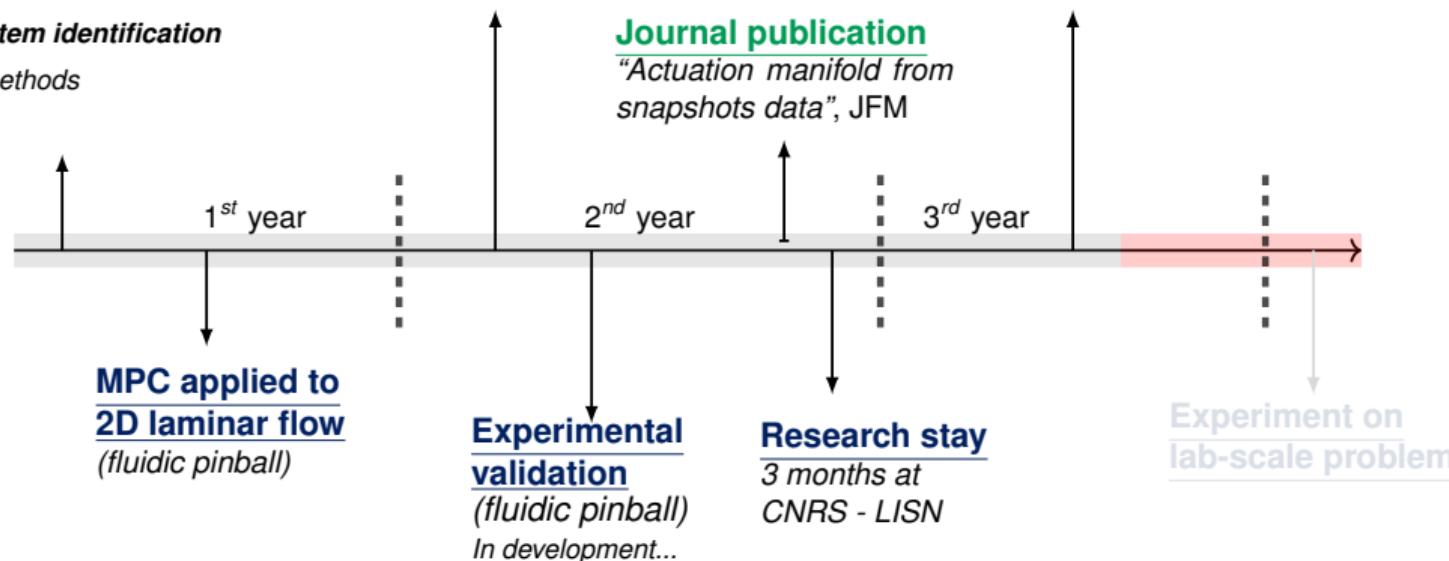
Journal publication

"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...



Literature review

- ▶ *Control theory and MPC*
- ▶ *Nonlinear system identification*
- ▶ *Data-driven methods*

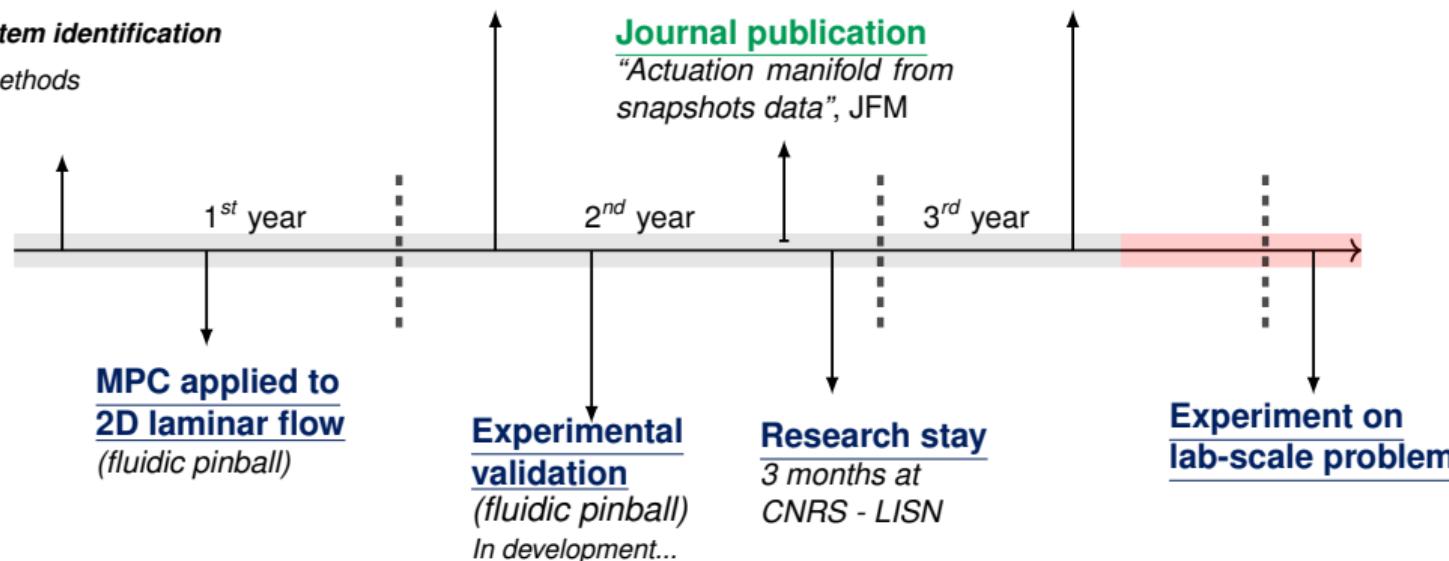
Journal publication

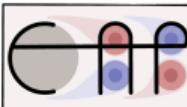
"Self-tuning model predictive control for wake flows", JFM

MPC for learning

MPC + RL

In development...





► Journal articles and code/datasets

- ✓ Marra L., Meilán-Vila A., Discetti S. **Self-tuning model predictive control for wake flows**. *Journal of Fluid Mechanics*. 2024; 983:A26. [10.1017/jfm.2024.47](https://doi.org/10.1017/jfm.2024.47) (Dataset available in [Zenodo](#) and code available in [GitHub](#)).
- ✓ Marra L., Cornejo-Maceda G. Y., Meilán-Vila A., Guerrero V., Rashwan S., Noack B. R., Discetti S., Ianiro A. **Actuation manifold from snapshot data**. *Journal of Fluid Mechanics*. 2024; 996:A26. [10.1017/jfm.2024.593](https://doi.org/10.1017/jfm.2024.593) (Dataset available in [Zenodo](#) and code available in [GitHub](#)).
- ✓ Chang H., Marra L., Cornejo Maceda G. Y., Jiang P., Chen J., Liu Y., Hu G., Chen J., Ianiro A., Discetti S., Meilán-Vila A. and Noack B. R. **Machine-learned flow estimation with sparse data—Exemplified for the rooftop of an unmanned aerial vehicle vertiport**. *Physics of Fluids*. 2024; 36:125198. [10.1063/5.0242007](https://doi.org/10.1063/5.0242007)

► Conference contributions

- ✓ 1st International Conference on Mathematical Modelling in Mechanics and Engineering (ICME), Sep 8–10, 2022, Belgrade, Serbia
- ✓ Math 2 Product: Emerging Technologies in Computational Science for Industry, Sustainability and Innovation (M2P), May 30 – Jun 1, 2023, Taormina, Italy
- ✓ 1st Joint Workshop on Functional Data Analysis and Nonparametric Statistics (JW-FDA-NP), Jun 6–9, 2023, Miraflores de la Sierra, Spain
- ✓ 2nd Spanish Fluid Mechanics Conference (SFMC), Jul 2–5, 2023, Barcelona, Spain
- ✓ APS Annual Meeting 2024, Nov 24–26, 2024, Salt Lake City, UT, USA
- ✓ 2nd ERCOFTAC SIG54 Workshop “Machine Learning for Fluid Dynamics”, Apr 2–4, 2025, London, UK

► Courses Attended

- **Machine Learning for Fluid Mechanics: Analysis, Modeling, Control and Closures**, Von Karman Institute and ULB Lecture Series, Jan 29 – Feb 2, 2024.

► Dissemination Activities

- ✓ Marra L., Rodríguez-Asensio A., Meilán-Vila A., Discetti S. *Descubre el encanto de controlar el agua*, **Viernes STEM**, Universidad Carlos III de Madrid.
- ✓ Marra L., Rodríguez-Asensio A., Meilán-Vila A., Discetti S. *Descubre la magia de controlar el aire o el agua*, **Madrid Science and Innovation Week**, Nov 15, 2023.

- ✓ Marra L. Participation in **Thesis Talk 2023**: *Controlling fluids as in the game of chess*. [Video](#)
- ✓ Marra L. Participation in **Thesis Talk 2024**: *Aprendiendo de la naturaleza a controlar la turbulencia*. [Video](#)

Acknowledgements

The authors acknowledge the support from the funding under "Orden 5067/2023, del consejero de educación, ciencia y universidades por la que se convocan ayudas para la contratación de personal investigador predoctoral en formación para el año 2022"

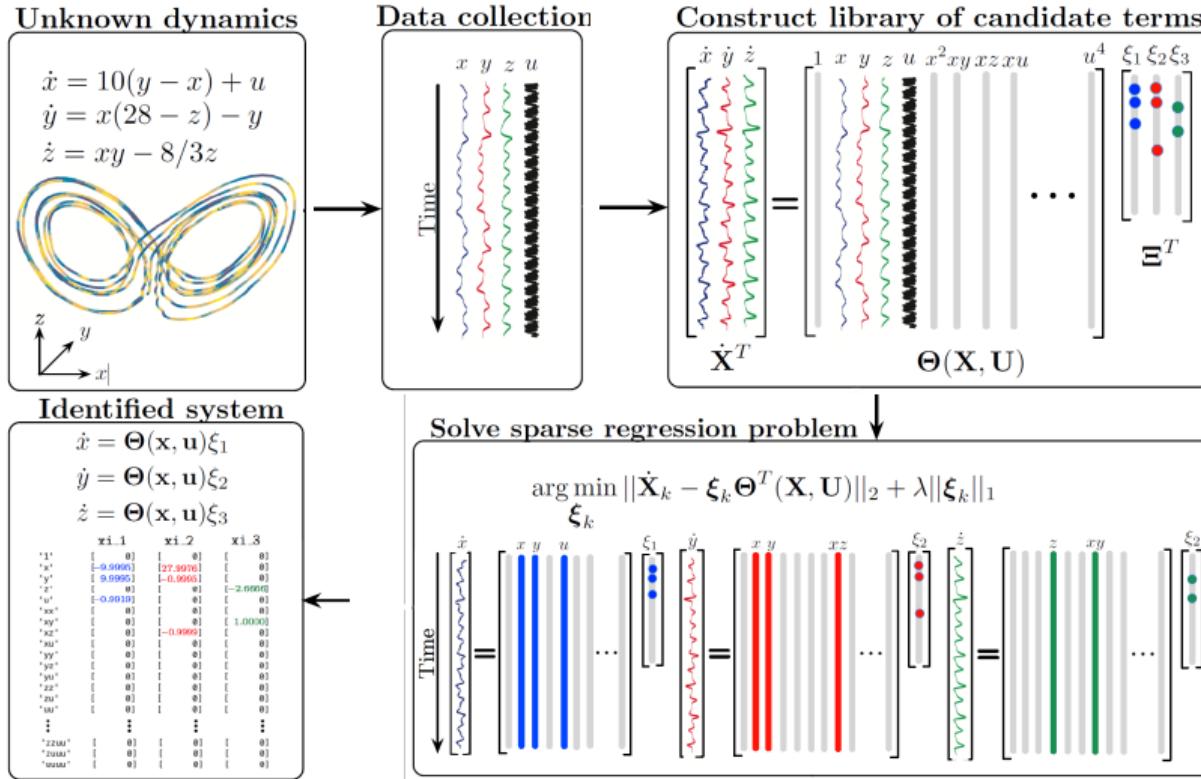
Comunidad
de Madrid

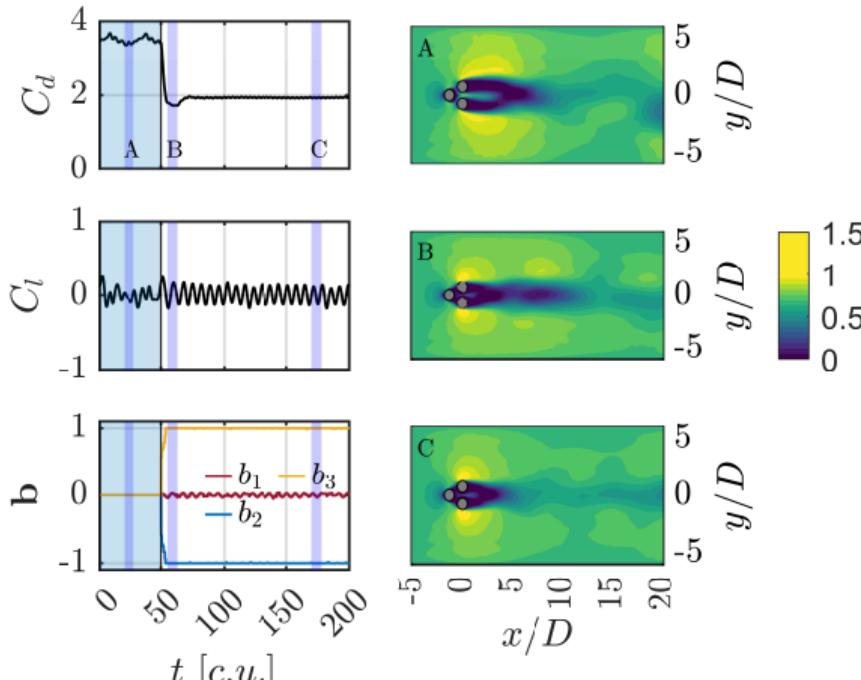
uc3m | Universidad Carlos III de Madrid

Any questions ?

Some additional slides...

Self-tuning model predictive control for wake flows





Output control mechanism

- ▶ **Boat-tailing** (drag reduction)
- ▶ **Phasor control** (lift stabilization)

Results

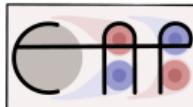
- ▶ $E(C_d)$ reduced by 43.5%
- ▶ $\sigma(C_d)$ reduced by 81.3%
- ▶ $\sigma(C_l)$ reduced by 3.89%
- ▶ $E(C_l) \approx 0$

Li, Y., Cui, W., Jia, Q., Li, Q., Yang, Z., Morzyński, M., and Noack, B. R. (2022). Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body. *J. Fluid Mech.*, 932, A7.

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- $\|\mathbf{x}\|_{\mathbf{H}}^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices



MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
 - ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
 - ▶ $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_{\mathbf{H}}^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_{\mathbf{H}}^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_{\mathbf{H}}^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

- ▶ **Errors state predictions**
- ▶ **Actuation cost**
- ▶ **Input variability**

$$\|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 = (\hat{\mathbf{c}}^{j+k|j})' \begin{bmatrix} \mathbf{Q}_{C_d} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{C_I} \end{bmatrix} \hat{\mathbf{c}}^{j+k|j}$$



MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

- ▶ **Errors state predictions**
- ▶ **Actuation cost**
- ▶ **Input variability**

$$\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 = \left(\mathbf{b}^{j+k|j} \right)' \begin{bmatrix} R_{b_1} & 0 & 0 \\ 0 & R_{b_2} & 0 \\ 0 & 0 & R_{b_3} \end{bmatrix} \mathbf{b}^{j+k|j}$$



MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- ▶ $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- ▶ $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

- ▶ **Errors state predictions**
- ▶ **Actuation cost**
- ▶ **Input variability**

$$\|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 = (\Delta \mathbf{b}^{j+k|j})' \begin{bmatrix} R_{\Delta b_1} & 0 & 0 \\ 0 & R_{\Delta b_2} & 0 \\ 0 & 0 & R_{\Delta b_3} \end{bmatrix} \Delta \mathbf{b}^{j+k|j}$$

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

All **parameters** included in a single **vector** $\boldsymbol{\eta} \in \mathbb{R}^{N_\eta}$:

$$\boldsymbol{\eta} = [w_p, Q_{C_d}, Q_{C_l}, R_{b_1}, R_{b_2}, R_{b_3}, R_{\Delta b_1}, R_{\Delta b_2}, R_{\Delta b_3}].$$

MPC cost function:

$$\mathcal{J}_{MPC}(\mathbf{b}) = \sum_{k=0}^{w_p} \|\hat{\mathbf{c}}^{j+k|j}\|_{\mathbf{Q}}^2 + \sum_{k=1}^{w_p} \left(\|\mathbf{b}^{j+k|j}\|_{\mathbf{R}_b}^2 + \|\Delta \mathbf{b}^{j+k|j}\|_{\mathbf{R}_{\Delta b}}^2 \right)$$

- w_p prediction horizon length
- $\hat{\mathbf{c}}^{j+k|j}$ predictions of \mathbf{c} in timesteps t^{j+k} , $k = 1, \dots, w_p$ conditioned to measure in t^j
- $\|\mathbf{x}\|_H^2 = \mathbf{x}' \mathbf{H} \mathbf{x}$
- \mathbf{Q} , \mathbf{R}_b , $\mathbf{R}_{\Delta b}$ positive and semi-positive definite diagonal weight matrices

All **parameters** included in a single **vector** $\boldsymbol{\eta} \in \mathbb{R}^{N_\eta}$:

$$\boldsymbol{\eta} = [w_p, Q_{C_d}, Q_{C_l}, R_{b_1}, R_{b_2}, R_{b_3}, R_{\Delta b_1}, R_{\Delta b_2}, R_{\Delta b_3}].$$

Control **results** $\tilde{\mathbf{c}} = \tilde{\mathbf{c}}(\boldsymbol{\eta})$ are **dependent** on the choice of the **hyperparameter vector**

Running the control algorithm for N_t timesteps, global control **performance** can be **assessed** by the following cost function:

$$\mathcal{J}_{BO}(\boldsymbol{\eta}) = \frac{1}{N_t} \sum_{k=1}^{N_c} \sum_{j=1}^{N_t} \left(\tilde{c}_k^j(\boldsymbol{\eta}) \right)^2$$

Running the control algorithm for N_t timesteps, global control **performance** can be **assessed** by the following cost function:

$$\mathcal{J}_{BO}(\boldsymbol{\eta}) = \frac{1}{N_t} \sum_{k=1}^{N_c} \sum_{j=1}^{N_t} \left(\tilde{c}_k^j(\boldsymbol{\eta}) \right)^2$$

Parameters in $\boldsymbol{\eta}$ are **optimized** by **maximizing** control **performance** the minimizing \mathcal{J}_{BO} .

The **tuning problem** is explained by the following **optimization** problem:

$$\eta_{opt} = \arg \min_{\eta \in H} \mathcal{J}_{BO}(\eta)$$

- ▶ $H \subset \mathbb{R}^{N_\eta}$ is a **hyper-rectangle** of the type $\eta \in [\eta^{\min}, \eta^{\max}]$
- ▶ \mathcal{J}_{BO} behaves as a "**black box**" function

The **tuning problem** is explained by the following **optimization** problem:

$$\eta_{opt} = \arg \min_{\eta \in H} \mathcal{J}_{BO}(\eta)$$

- ▶ $H \subset \mathbb{R}^{N_\eta}$ is a **hyper-rectangle** of the type $\eta \in [\eta^{\min}, \eta^{\max}]$
- ▶ \mathcal{J}_{BO} behaves as a "**black box**" function

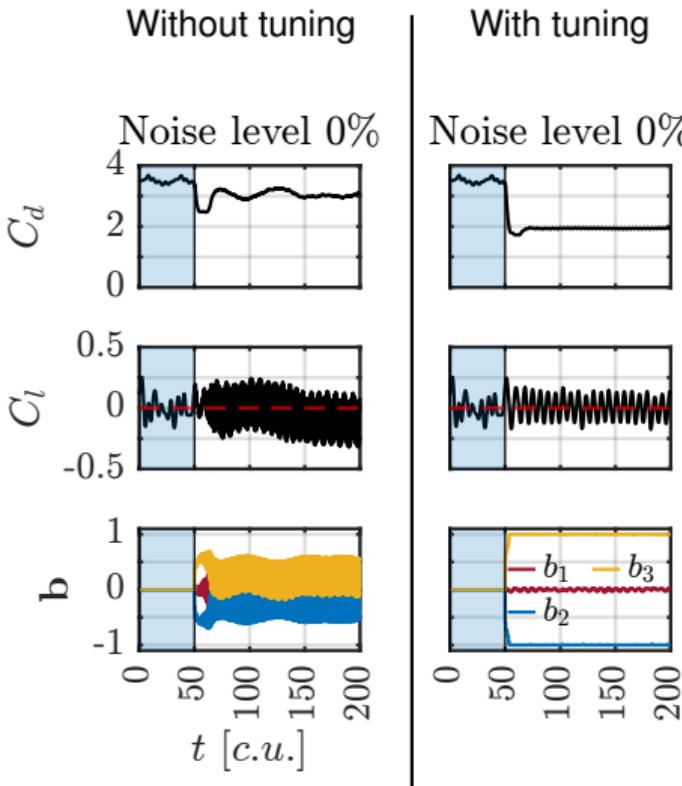
Bayesian optimization builds a **probabilistic model** of \mathcal{J}_{BO}

- ▶ **Gaussian process** (GP) is used

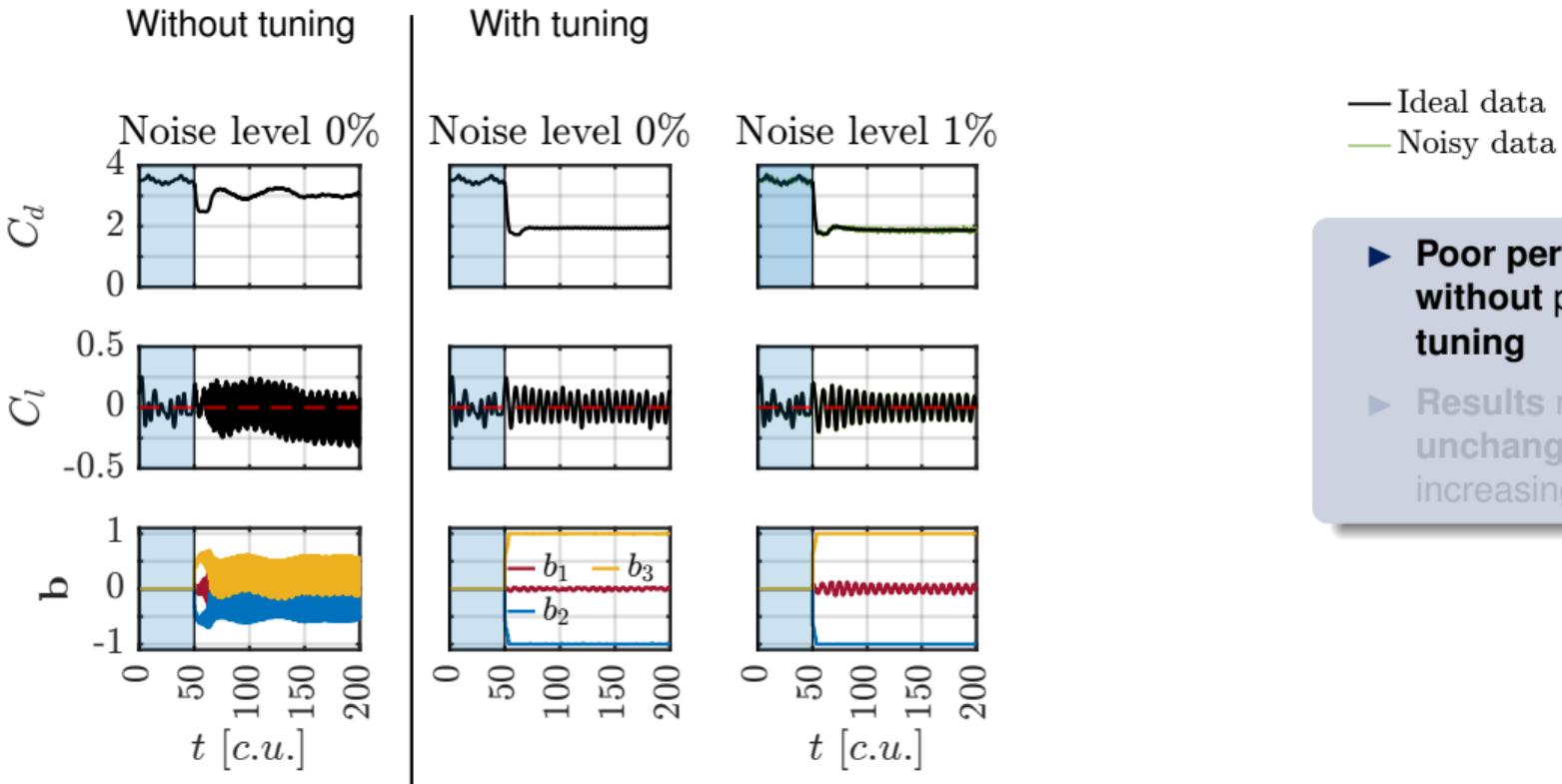
Given the **data** the posterior **distribution** is **updated**

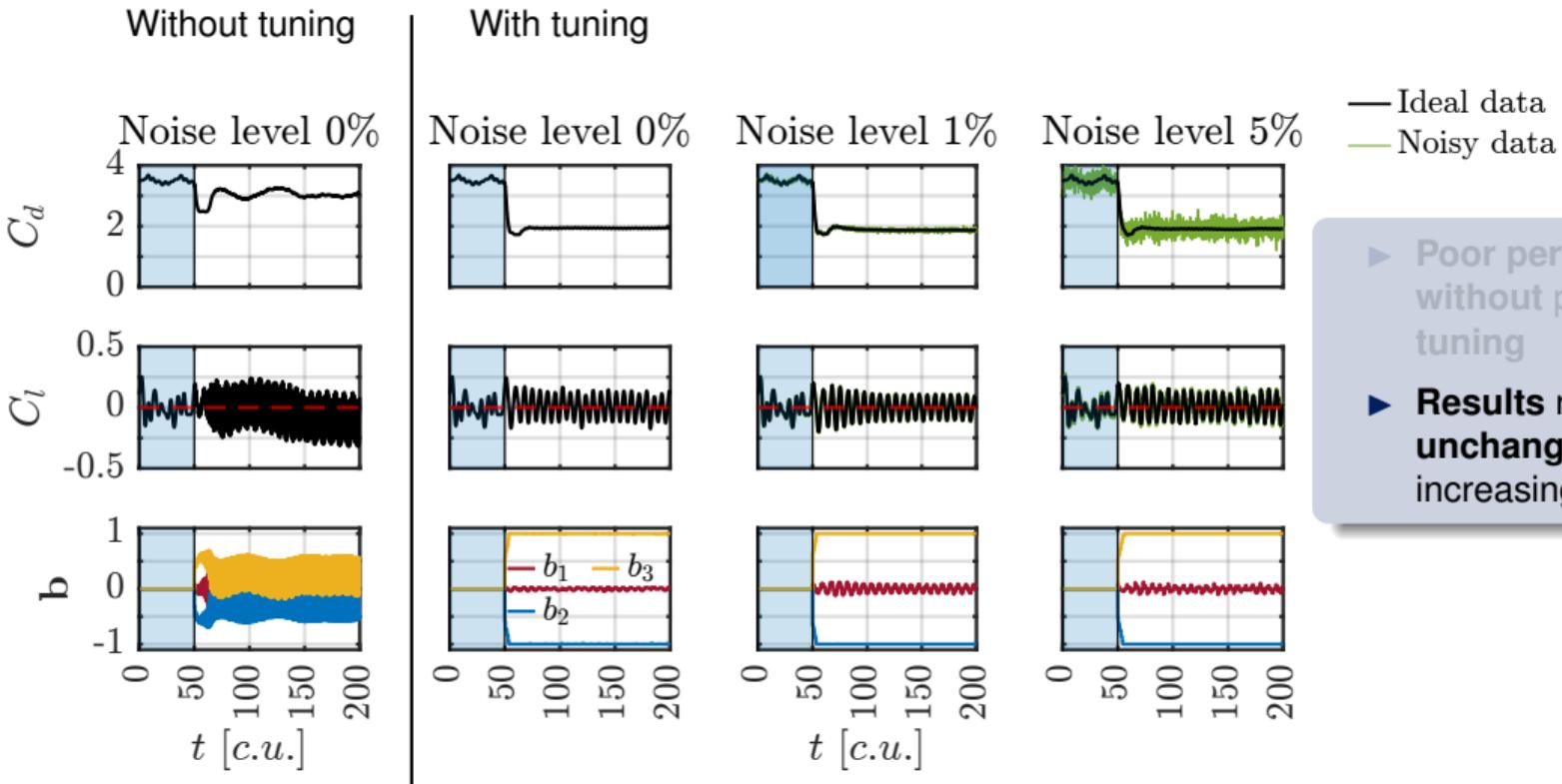
An **acquisition process** iteratively **proposes** a new **sampling point** in the domain in order to find the minimum.

Balance between **exploration** and **exploitation**.



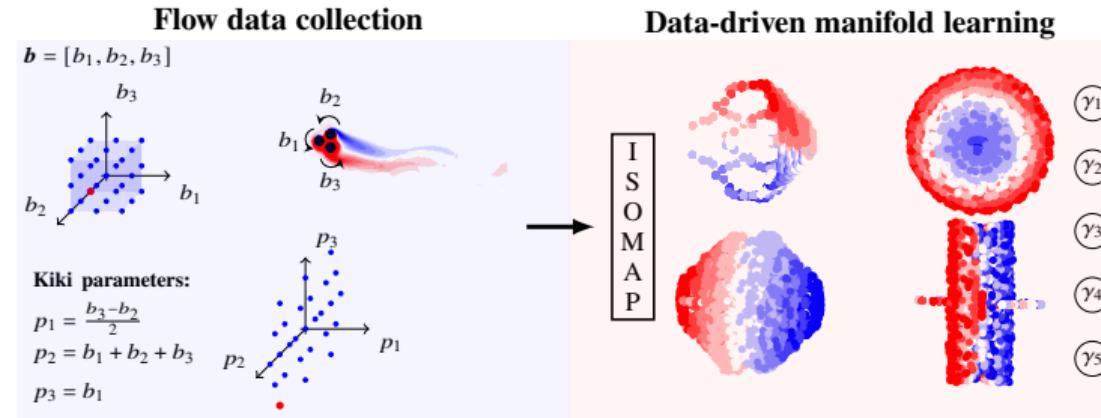
- ▶ Poor performance without parameters tuning
- ▶ Results remains unchanged with increasing noise



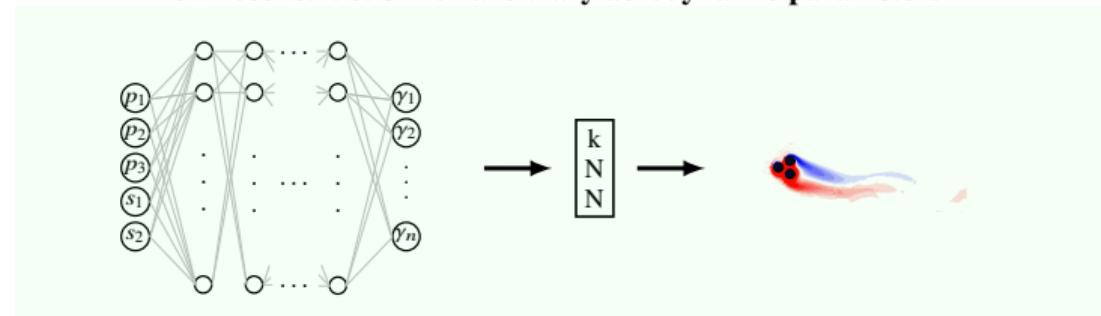


- ▶ Poor performance without parameters tuning
- ▶ Results remains unchanged with increasing noise

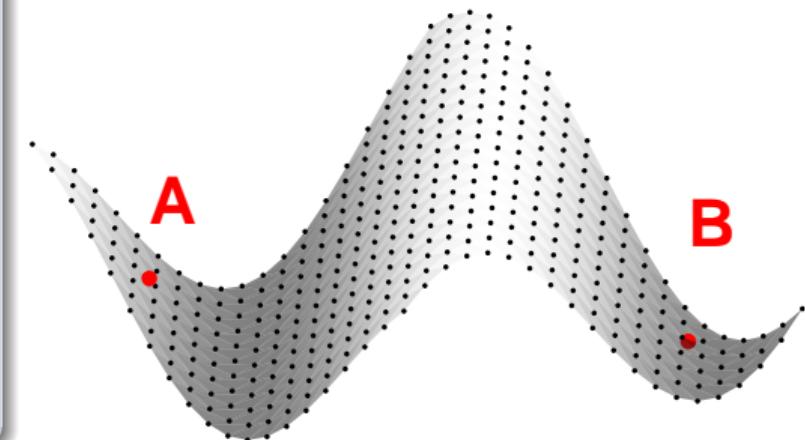
Actuation manifold from snapshots data



Flow reconstruction for arbitrary aerodynamic parameters

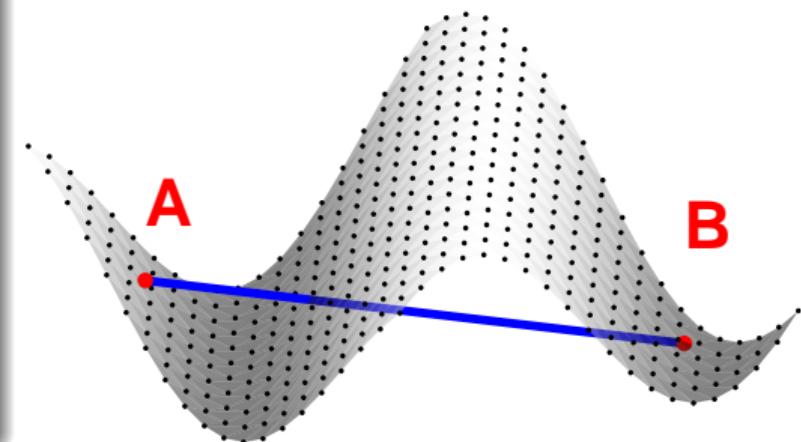


- ▶ Snapshots data $\mathbf{u}_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ Approximate **geodesic distance** matrix \mathbf{D}_G :
 - Construct neighbourhood graph
 - Compute **shortest path** across graph (e.g., Floyd-Warshall method)
- ▶ **Project** data into low-dimensional space (MDS) retaining n coordinates



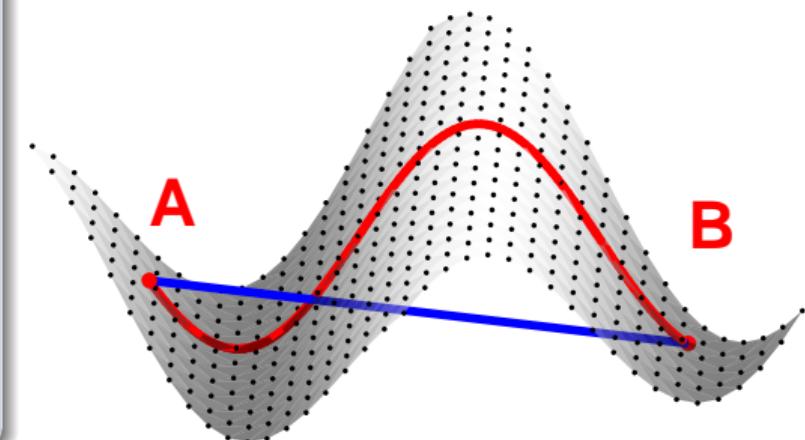
Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.

- ▶ Snapshots data $\mathbf{u}_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ Approximate geodesic distance matrix \mathbf{D}_G :
 - Construct neighbourhood graph
 - Compute shortest path across graph (e.g., Floyd-Warshall method)
- ▶ Project data into low-dimensional space (MDS) retaining n coordinates



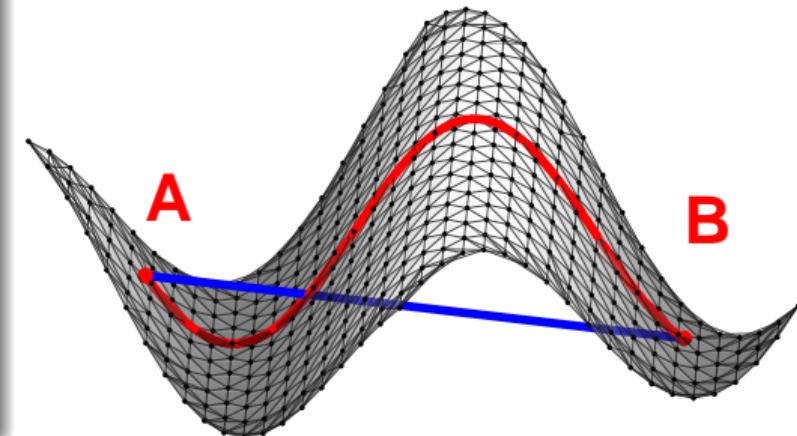
Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.

- ▶ Snapshots data $\mathbf{u}_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ **Approximate geodesic distance** matrix \mathbf{D}_G :
 - Construct **neighbourhood graph**
 - Compute **shortest path** across graph (e.g., Floyd-Warshall method)
- ▶ **Project** data into low-dimensional space (MDS) retaining n coordinates



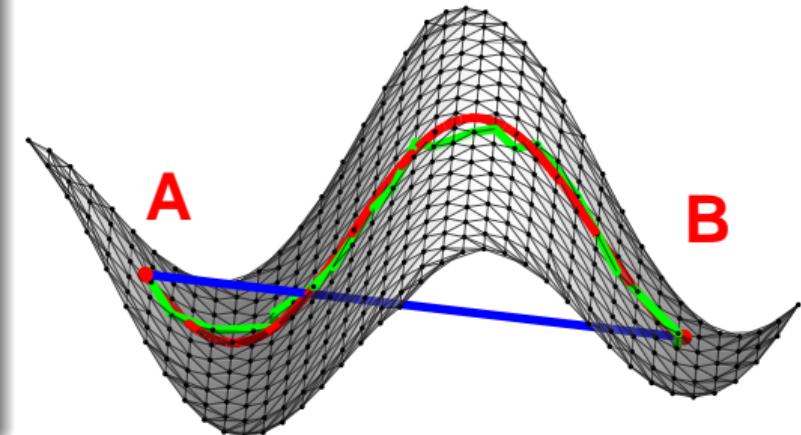
Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.

- ▶ Snapshots data $u_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ **Approximate geodesic distance** matrix \mathbf{D}_G :
 - Construct **neighbourhood graph**
 - Compute **shortest path** across graph (e.g., Floyd-Warshall method)
- ▶ **Project** data into low-dimensional space (MDS) retaining n coordinates



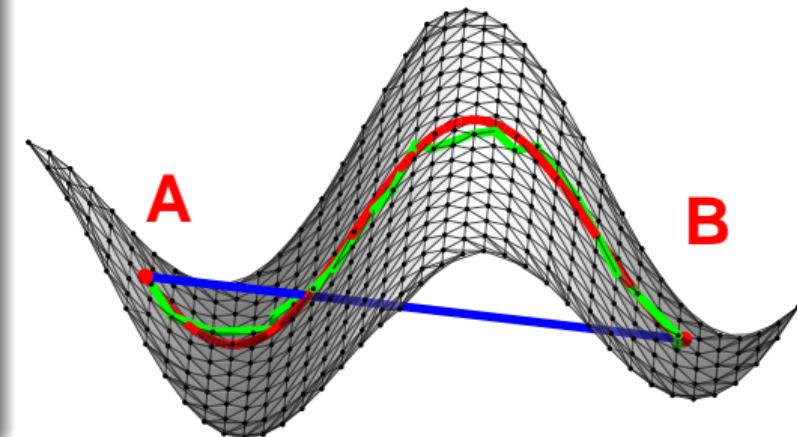
Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.

- ▶ Snapshots data $u_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ **Approximate geodesic distance** matrix \mathbf{D}_G :
 - Construct **neighbourhood graph**
 - Compute **shortest path** across graph (e.g., Floyd-Warshall method)
- ▶ **Project** data into low-dimensional space (MDS) retaining n coordinates

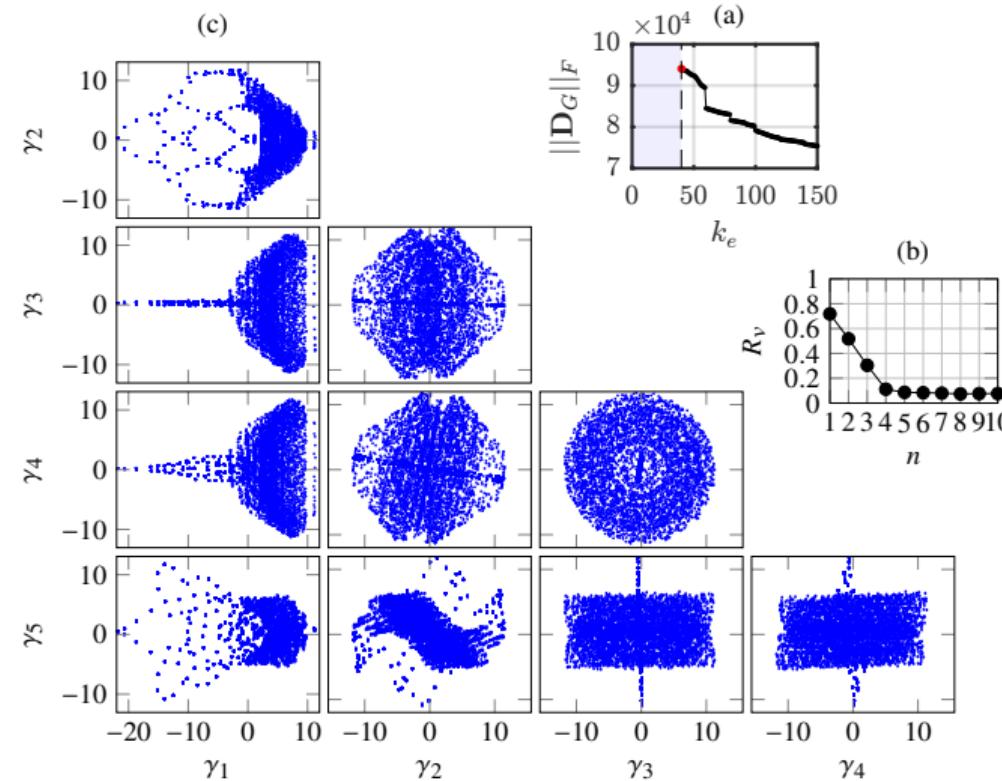


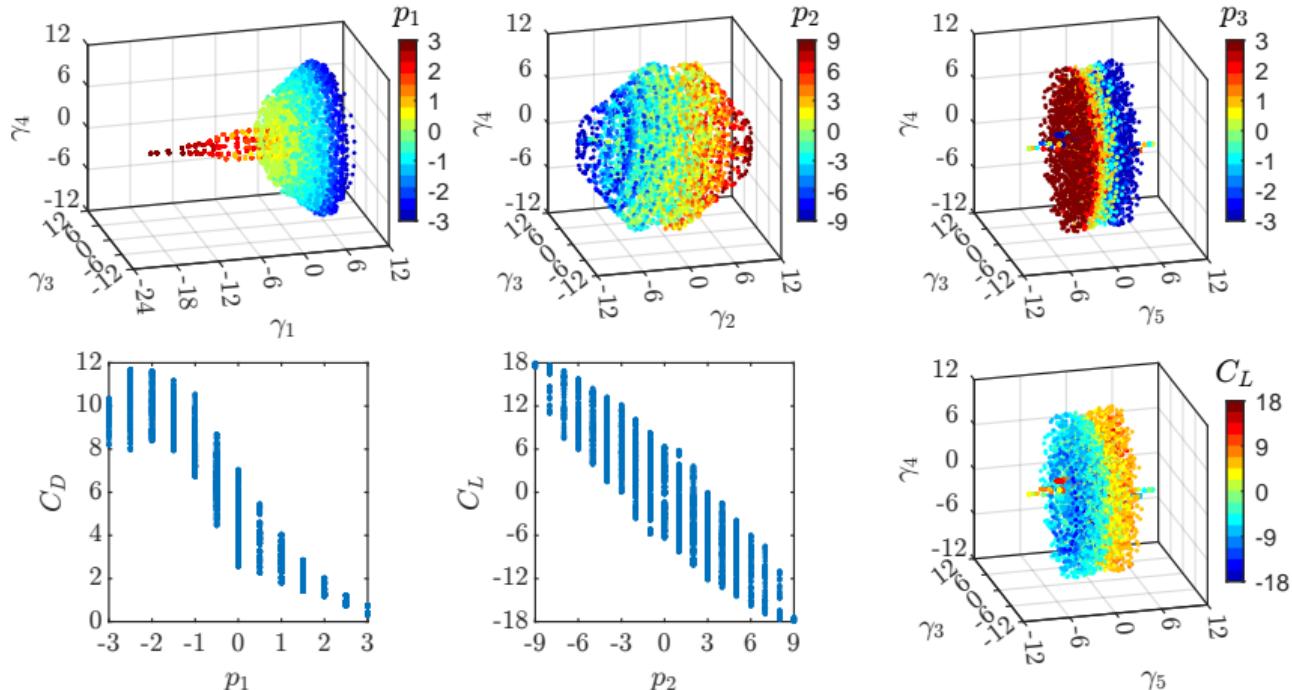
Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.

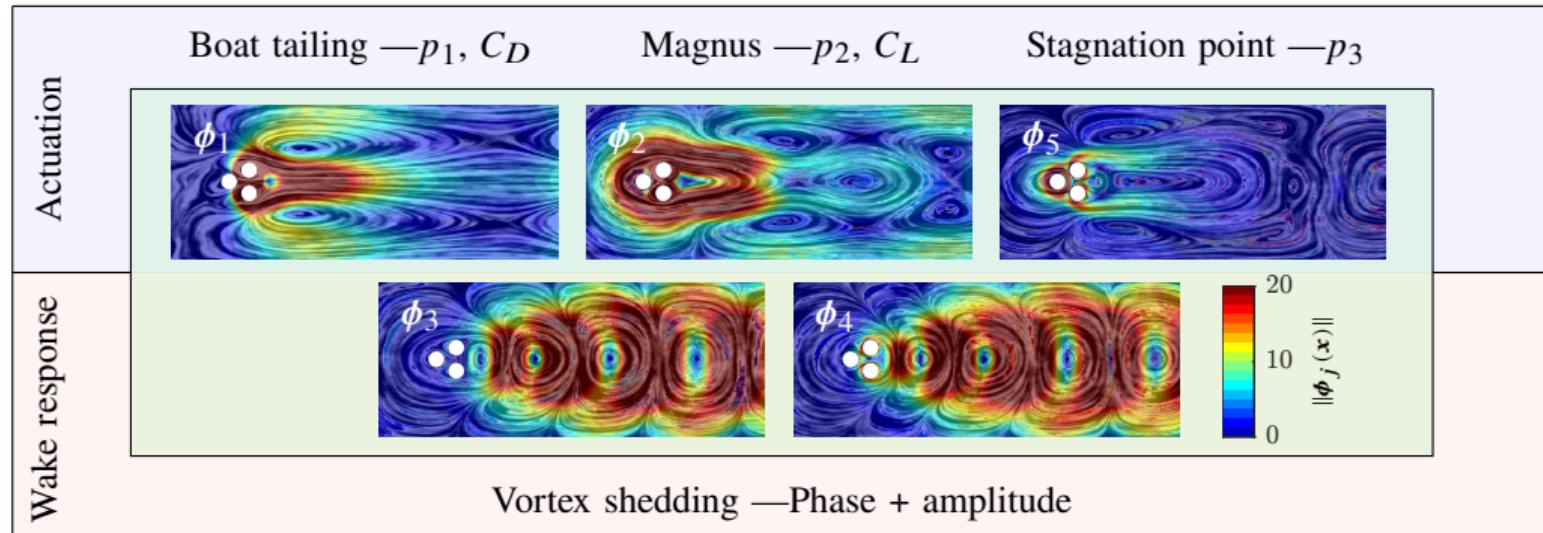
- ▶ Snapshots data $u_i, i = 1, \dots, M$
- ▶ Build the **euclidean distance** matrix \mathbf{D}_E among snapshots
- ▶ **Approximate geodesic distance** matrix \mathbf{D}_G :
 - Construct **neighbourhood graph**
 - Compute **shortest path** across graph (e.g., Floyd-Warshall method)
- ▶ **Project** data into low-dimensional space (MDS) retaining n coordinates



Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500), 2319-2323.







$$p_1 = \frac{b_3 - b_2}{2}$$

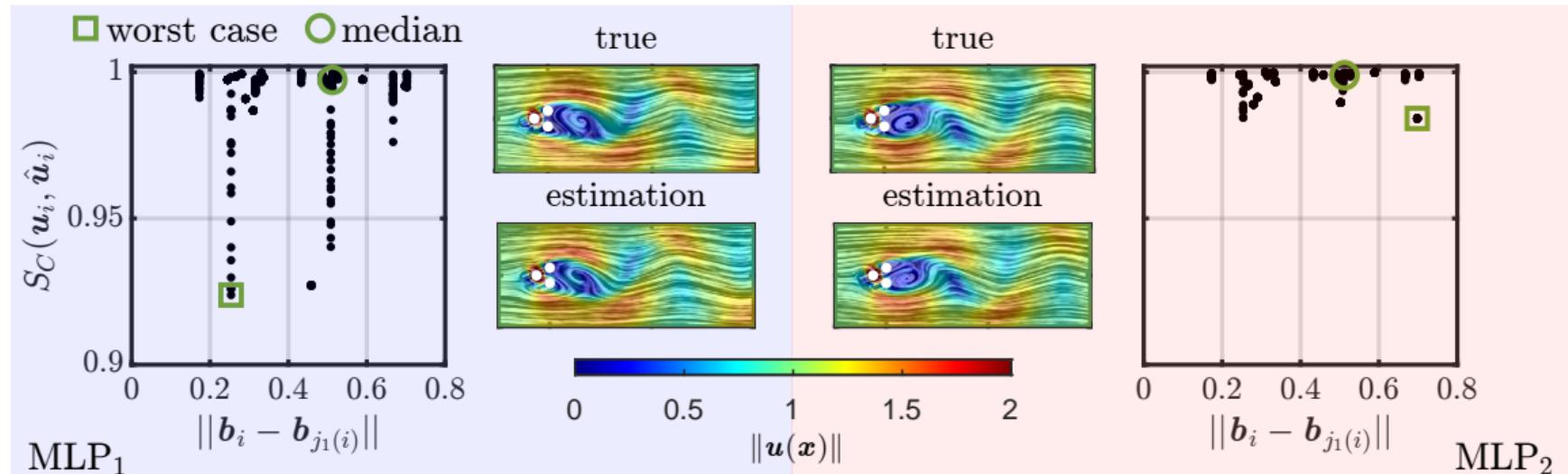
(Base-bleeding/boat-tailing)

$$p_2 = b_1 + b_2 + b_3$$

(Magnus)

$$p_3 = b_1$$

(Stagnation point control)



$$S_C(\mathbf{u}_i, \mathbf{u}_j) = \frac{\langle \mathbf{u}_i, \mathbf{u}_j \rangle}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|}$$

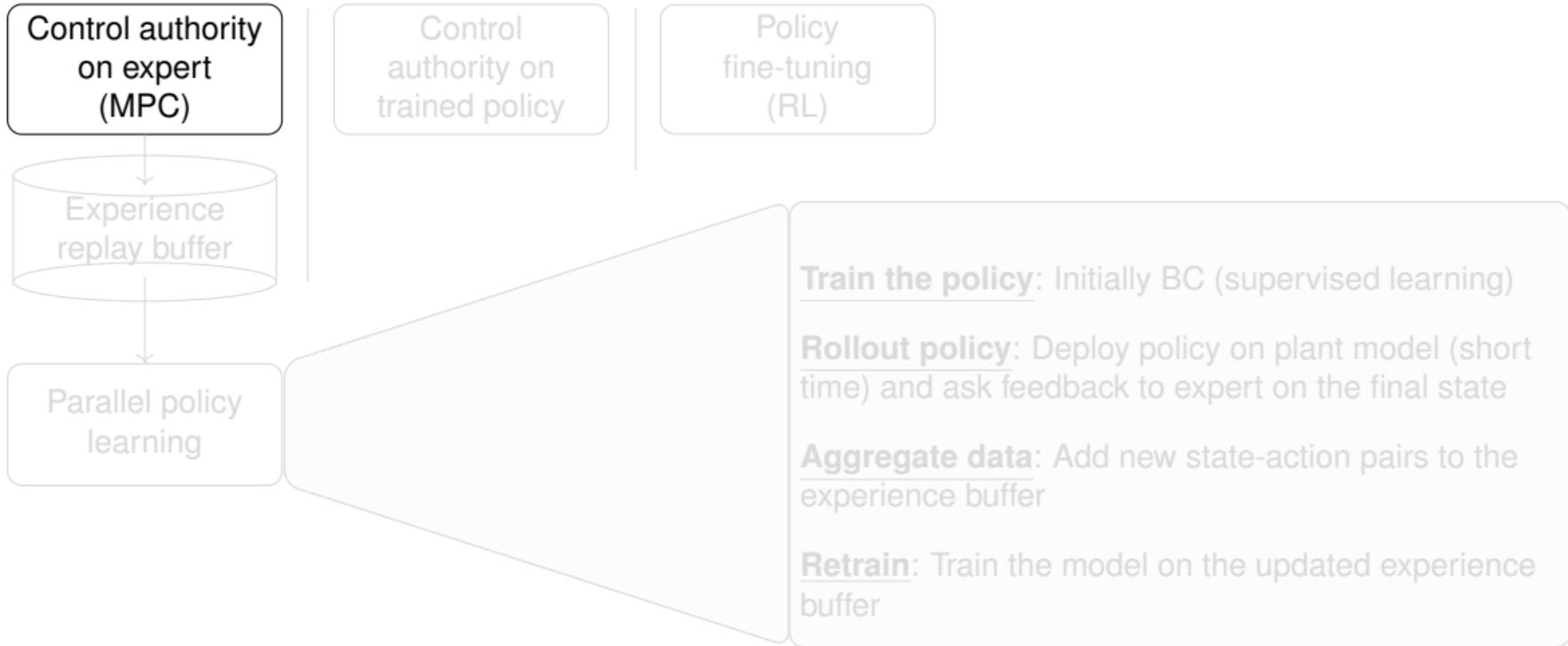
MPC, imitation and reinforcement learning

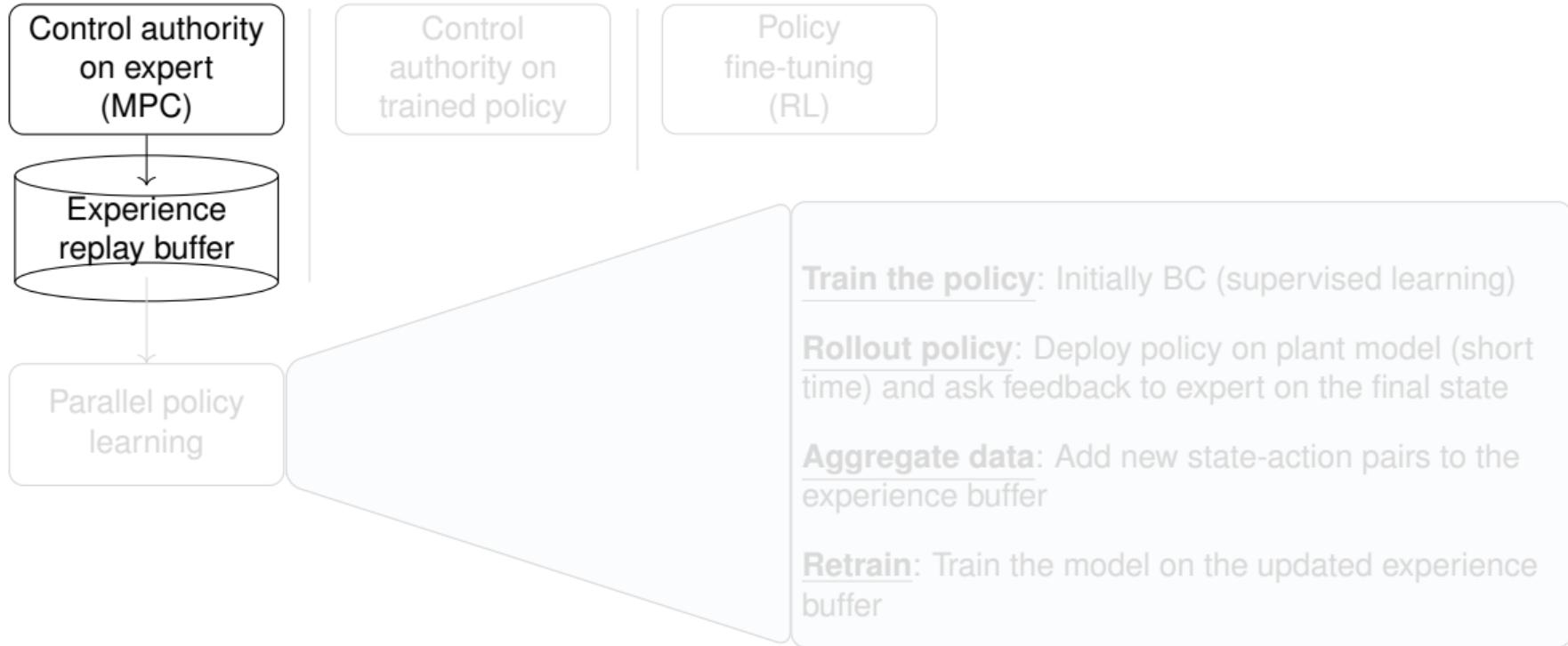
The 'expert'
(MPC)

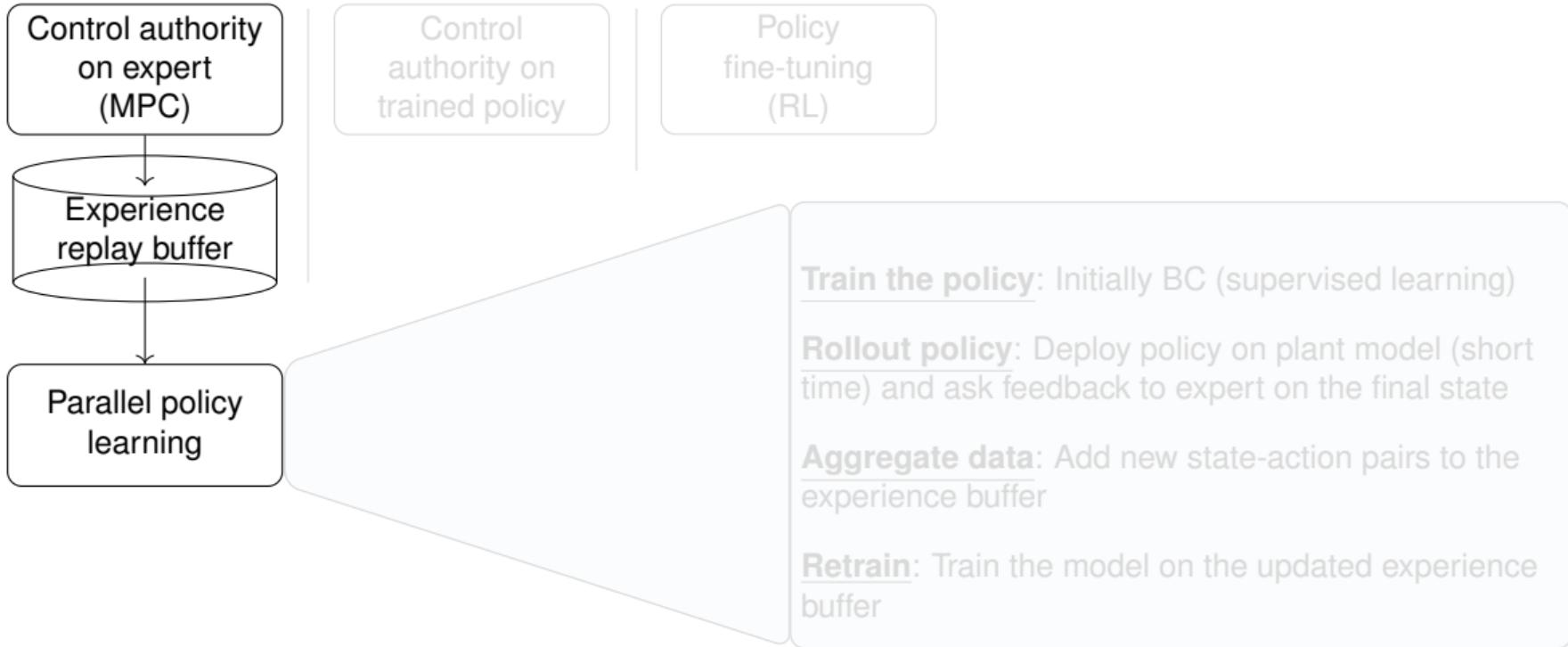
The 'student'
(NN policy)

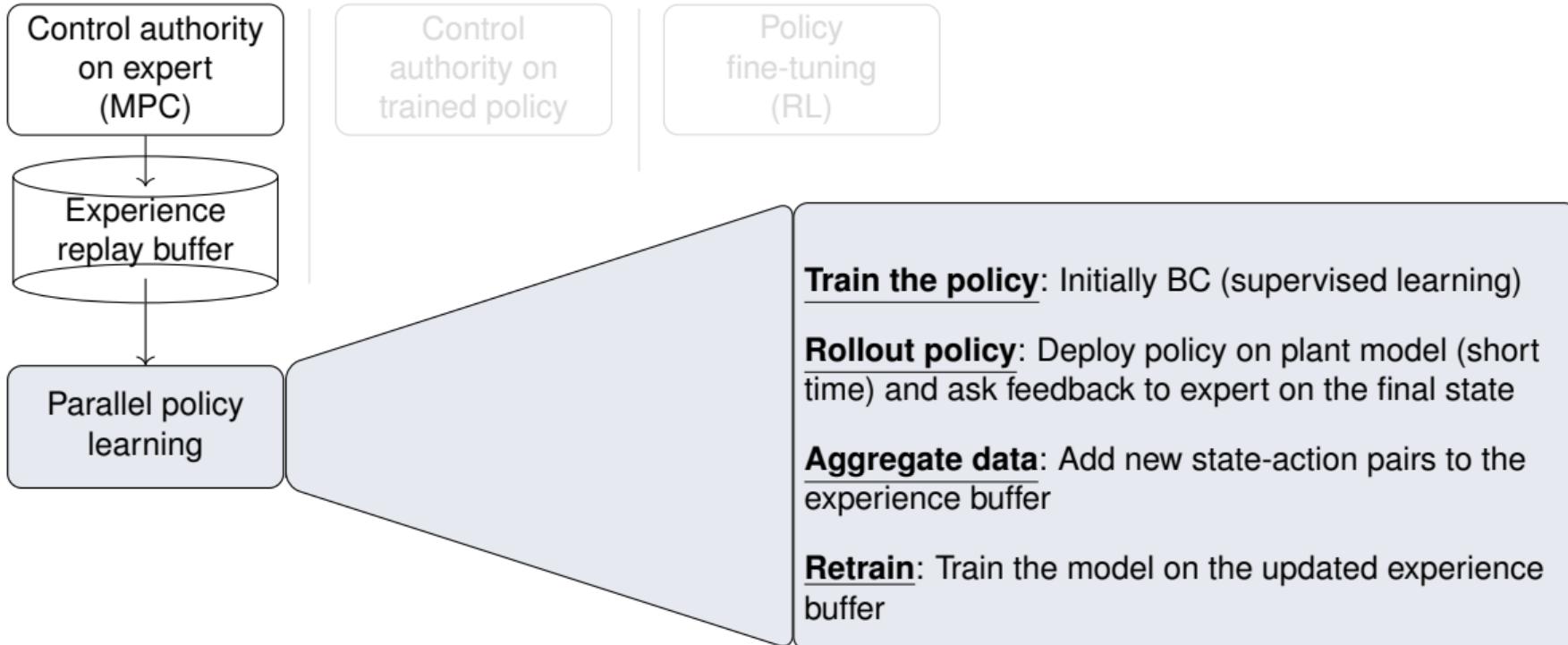
- Safe
- Greedy optimal
- Computational cost

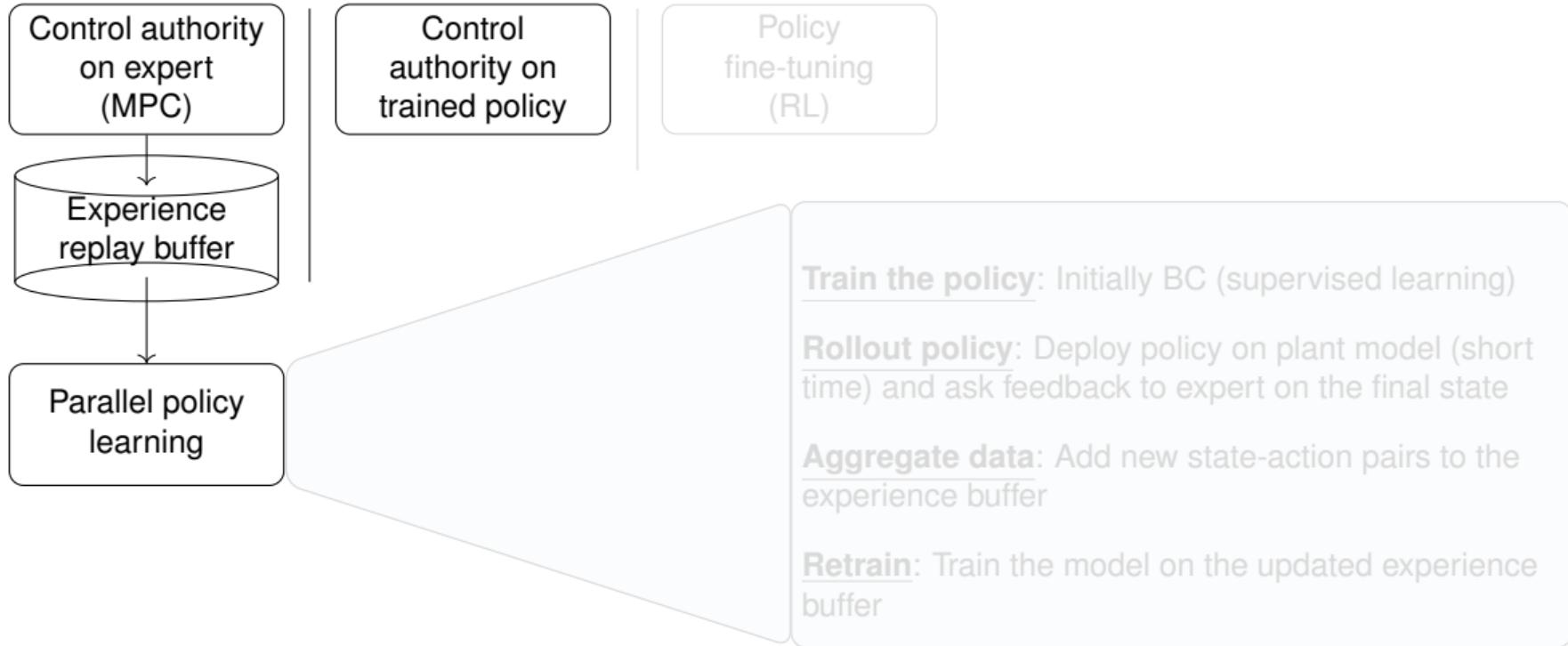
- Unsafe training with reinforcement learning (RL)
- Faster (direct mapping)
- Less data hungry after imitation

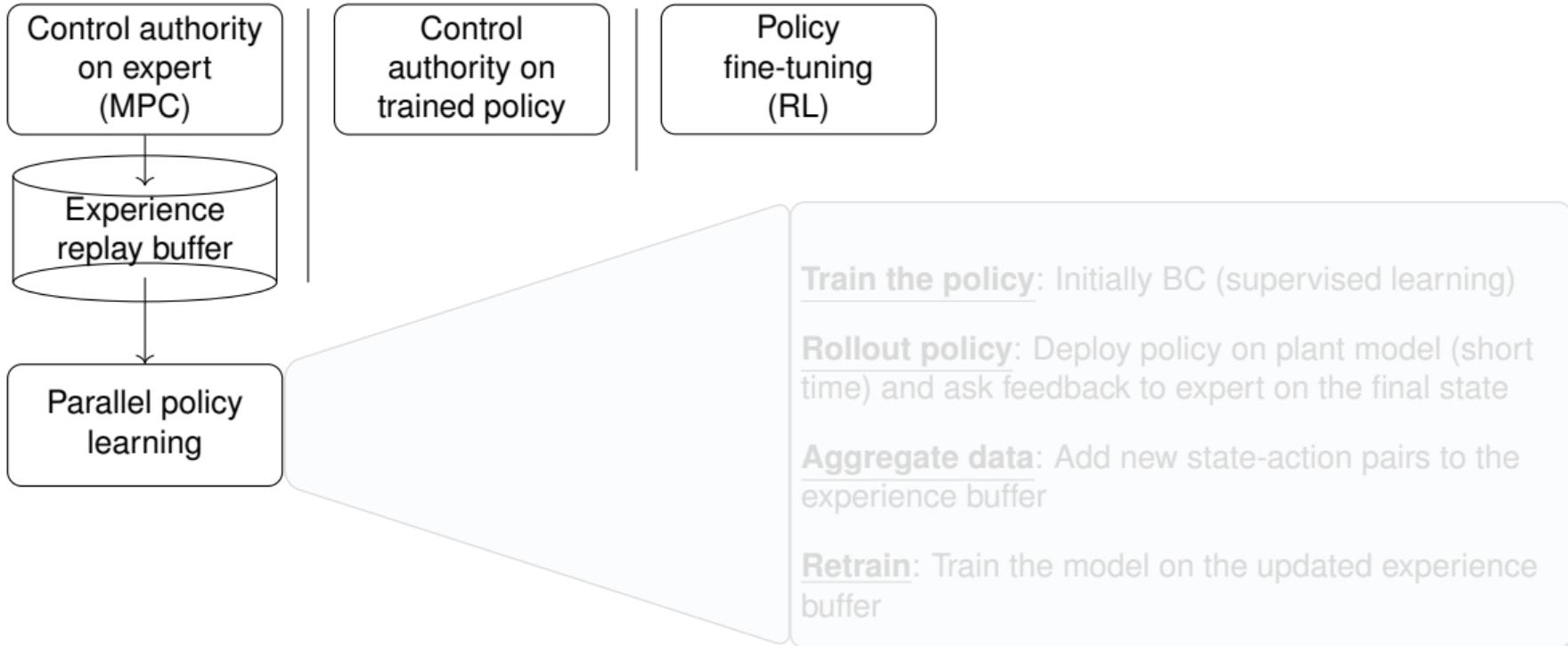














Kuramoto–Sivashinsky (KS) equation:

$$\frac{\partial x}{\partial t} + x \frac{\partial x}{\partial \xi} = - \frac{\partial^2 x}{\partial \xi^2} - \frac{\partial^4 x}{\partial \xi^4} + \phi$$

- ▶ State x , time t , spatial coordinate ξ
- ▶ Domain in $[0, L]$, with $L = 22$
- ▶ $x(\xi, t) = x(\xi + L, t)$
- ▶ Sampling on 64 collocation points
- ▶ ϕ is a 4-dimensional Gaussian supported actuation

Learning task:

Guide the KS solution from a random initial condition to the unstable equilibrium point E_3 .

Failure → not reaching the target within a threshold in an episode.

Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. *Proceedings of the Royal Society A*, 475(2231), 20190351.

Kuramoto–Sivashinsky (KS) equation:

$$\frac{\partial x}{\partial t} + x \frac{\partial x}{\partial \xi} = - \frac{\partial^2 x}{\partial \xi^2} - \frac{\partial^4 x}{\partial \xi^4} + \phi$$

- ▶ State x , time t , spatial coordinate ξ
- ▶ Domain in $[0, L]$, with $L = 22$
- ▶ $x(\xi, t) = x(\xi + L, t)$
- ▶ Sampling on 64 collocation points
- ▶ ϕ is a 4-dimensional Gaussian supported actuation

Learning task:

Guide the KS solution from a random initial condition to the unstable equilibrium point E_3 .

Failure → not reaching the target within a threshold in an episode.

Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. *Proceedings of the Royal Society A*, 475(2231), 20190351.

Kuramoto–Sivashinsky (KS) equation:

$$\frac{\partial x}{\partial t} + x \frac{\partial x}{\partial \xi} = - \frac{\partial^2 x}{\partial \xi^2} - \frac{\partial^4 x}{\partial \xi^4} + \phi$$

- ▶ State x , time t , spatial coordinate ξ
- ▶ Domain in $[0, L]$, with $L = 22$
- ▶ $x(\xi, t) = x(\xi + L, t)$
- ▶ Sampling on 64 collocation points
- ▶ ϕ is a 4-dimensional Gaussian supported actuation

$\hat{e}_1, \hat{e}_2, \hat{e}_3 \rightarrow$ squared dominant Fourier coefficients

Learning task:

Guide the KS solution from a random initial condition to the unstable equilibrium point E_3 .

Failure \rightarrow not reaching the target within a threshold in an episode.

Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. *Proceedings of the Royal Society A*, 475(2231), 20190351.

Kuramoto–Sivashinsky (KS) equation:

$$\frac{\partial x}{\partial t} + x \frac{\partial x}{\partial \xi} = - \frac{\partial^2 x}{\partial \xi^2} - \frac{\partial^4 x}{\partial \xi^4} + \phi$$

- ▶ State x , time t , spatial coordinate ξ
- ▶ Domain in $[0, L]$, with $L = 22$
- ▶ $x(\xi, t) = x(\xi + L, t)$
- ▶ Sampling on 64 collocation points
- ▶ ϕ is a 4-dimensional Gaussian supported actuation

Learning task:

Guide the KS **solution** from a random initial condition to the **unstable equilibrium** point E_3 .

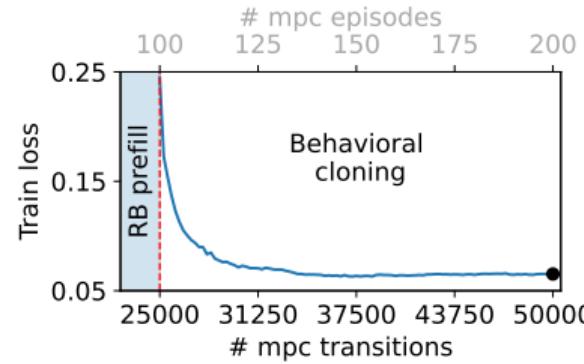
Failure → not reaching the target within a threshold in an episode.

Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. *Proceedings of the Royal Society A*, 475(2231), 20190351.

- * Plant model from data-driven Operator Inference with POD on 17 modes and model dependencies up to 3rd polynomial order
- ** MPC with full-state feedback

Kramer, B., et al. (2024). Learning nonlinear reduced models from data with operator inference. *Annual Review of Fluid Mechanics*, 56(1), 521-548.

W/o policy rollouts on plant model...

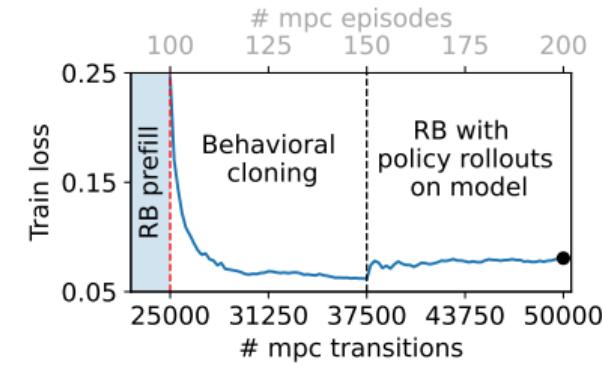


* Policy with sparse sensors feedback (8 equispaced sensors)

W/o policy rollouts on plant model...



W/ policy rollouts on plant model...



* Policy with sparse sensors feedback (8 equispaced sensors)