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6ﬁ—f? A brief introduction on fluid flow control uecadam

[Puri et al. (2018)]
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Control goals:

» Drag reduction

» Lift increase

» Mixing layer control
» Noise reduction

» Mixing enhancement
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Control strategies:

» Aerodynamic shape optimization

» Passive control
» Active control

@ K. Puri, M. Laufer, H. Miiller-Vahl, D. Greenblatt, & S. H. Frankel. (2017). Computations of Active Flow Control Via Steady Blowing Over a NACA-0018
Airfoil: Implicit LES and RANS Validated Against Experimental Data. AIAA 2018-0792, 2018 AIAA Aerospace Sciences Meeting, January 2018.

L. Marra

MPC to turbulent flows

2/37



6—ﬁ—ﬁ Model Predictive Control (MPC): working principle  ycdm
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‘ Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.
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Q Rakovic, S.V and Levine, W.S. (2017). Handbook of model predictive control. Springer.
@ Mischiati, M., Lin, HT., Herold, P. et al. Internal models direct dragonfly interception steering. Nature 517, 333—-338 (2015).
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Model Predictive Control (MPC): working principle

» Working principle: Optimal control problem over a receding horizon with constraints.
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| Model Predictive Control (MPC): working principle

» Working principle: Optimal control problem over a receding horizon with constraints.
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Challenges of plant modeling:

Multi-dimensional
Chaotic
Nonlinear
Multi-scale

Time delays

Model order reduction
required

Trade-off between accuracy
and efficiency
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G A first control case: fluidic pinball ueadm

S

» Wide variety of actuation mechanism and chaotic dynémics

» Control goal: drag reduction / lift stabilization
» Control actuation: independent rotation of the three cylinders J

@ Deng, N., Noack, B., Morzynski, M., and Pastur, L. (2022). Cluster-based hierarchical network model of the fluidic pinball — cartographing transient and
post-transient, multi-frequency, multi-attractor behaviour. J. Fluid Mech., 934, A24.
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Control approach

CHf
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L. Marra MPC to turbulent flows

» Sparse Identification of Nonlinear
DYnamics (SINDY) for force
modeling

» Bayesian optimization (BO) for MPC
hyperparameter selection

» Local polynomial regression (LPR) for
noise robustness

@ Hewing, L., Wabersich, K. P, Menner, M., and Zeilinger,

M. N. (2020). Learning-based model predictive control:
Toward safe learning in control. Annu. rev. control robot., 3,
269-296.

@ Nottingham, Q. J., and Cook, D. F. (2001). Local linear

regression for estimating time series data. Comput. Stat.
Data Anal., 37(2), 209-217.
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Results
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6ﬁ—ff Model order reduction with ISOMAP ueadm

Flow data collection Data-driven manifold learning
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€ Learning from MPC ucdm

® Training a policy from MPC via Imitation and Reinforcement Learning (RL) strategies.

Strategic goals:
» Safe and efficient learning
» Real-time (fast) control in experiments
» Generalization beyond MPC horizon
» Scalability to complex systems

Source: Dettmers T. (2016) Deep Learning in a
Nutshell: Reinforcement Learning, NVIDIA.
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https://developer.nvidia.com/blog/deep-learning-nutshell-reinforcement-learning/
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6ﬂ-ﬁ, 2| Contributions ueadm

» Journal articles and code/datasets
v Marra L., Meilan-Vila A., Discetti S. Self-tuning model predictive control for wake flows. Journal of Fluid
Mechanics. 2024; 983:A26. 10.1017/jfm.2024.47 (Dataset available in Zenodo and code available in GitHub).
v Marra L., Cornejo-Maceda G. Y., Meilan-Vila A., Guerrero V., Rashwan S., Noack B. R., Discetti S., laniro A.
Actuation manifold from snhapshot data. Journal of Fluid Mechanics. 2024; 996:A26.
10.1017/jfm.2024.593 (Dataset available in Zenodo and code available in GitHub).

v" Chang H., Marra L., Cornejo Maceda G. Y., Jiang P., Chen J., Liu Y., Hu G., Chen J., laniro A., Discetti S.,
Meilan-Vila A. and Noack B. R. Machine-learned flow estimation with sparse data—Exemplified for the
rooftop of an unmanned aerial vehicle vertiport. Physics of Fluids. 2024; 36:125198. 10.1063/5.0242007

» Conference contributions

v 18t International Conference on Mathematical Modelling in Mechanics and Engineering (ICME), Sep
8-10, 2022, Belgrade, Serbia

v Math 2 Product: Emerging Technologies in Computational Science for Industry, Sustainability and
Innovation (M2P), May 30 — Jun 1, 2023, Taormina, ltaly

v 15t Joint Workshop on Functional Data Analysis and Nonparametric Statistics (JW-FDA-NP), Jun 6-9,

2023, Miraflores de la Sierra, Spain

2" gpanish Fluid Mechanics Conference (SFMC), Jul 2-5, 2023, Barcelona, Spain

APS Annual Meeting 2024, Nov 24-26, 2024, Salt Lake City, UT, USA

2nd ERCOFTAC SIG54 Workshop “Machine Learning for Fluid Dynamics”, Apr 2—4, 2025, London, UK
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https://doi.org/10.1017/jfm.2024.47
https://zenodo.org/records/10530019
https://github.com/Lmarra1/Self-tuning-model-predictive-control-for-wake-flows
https://doi.org/10.1017/jfm.2024.593
 https://zenodo.org/doi/10.5281/zenodo.12802191
 https://github.com/Lmarra1/Actuation-manifold-from-snapshot-data.git
https://doi.org/10.1063/5.0242007

6ﬂ-f°, 2| Contributions ueadm

» Courses Attended

» Machine Learning for Fluid Mechanics: Analysis, Modeling, Control and Closures, Von Karman
Institute and ULB Lecture Series, Jan 29 — Feb 2, 2024.

» Dissemination Activities
v Marra L., Rodriguez-Asensio A., Meilan-Vila A., Discetti S. *Descubre el encanto de controlar el agua*,
Viernes STEM, Universidad Carlos Il de Madrid.
v Marra L., Rodriguez-Asensio A., Meilan-Vila A., Discetti S. *Descubre la magia de controlar el aire o el
agua*, Madrid Science and Innovation Week, Nov 15, 2023.

v Marra L. Participation in Thesis Talk 2023: Controlling fluids as in the game of chess. Video
v Marra L. Participation in Thesis Talk 2024: Aprendiendo de la naturaleza a controlar la turbulencia. Video
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https://media.uc3m.es/video/649403579b2ac001a6072f36?track_id=649404f79b2ac00243050d22
https://media.uc3m.es/video/666bf80b9ab8c93a455f18b1
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Sparse ldentification of Nonlinear DYnamics ucadam
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6—ﬁ—ﬁ MPC results: ideal measurements ucam
4 e 5
= l Q
<2 HO = Output control mechanism
oL2 ¥ K » Boat-tailing (drag reduction)
1 5 1.5 » Phasor control (lift stabilization)
T LAAM. Q 1
Q 0' ' 'WM BO 3 05
-1 -5 0
) » E(Cy) reduced by 43.5%
° » o(Cy) reduced by 81.3%
a0 —bi —b3 0 Q
=b, ; S » o(C)) reduced by 3.89%
-1 - -
Q@\QQ@Q%Q“?O“’Sﬂﬁ > E(C)~0 )
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@ Li, Y., Cui, W,, Jia, Q., Li, Q., Yang, Z., Morzynski, M., and Noack, B. R. (2022). Explorative gradient method for active drag reduction of the fluidic pinball and
slanted Ahmed body. J. Fluid Mech., 932, A7.
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6—ﬂ-f°. 2 MPC cost function ueadm

MPC cost function:
Wp NPT Wp Kl i Kli
Tweo(b) =" 1&g+ > " (163, + |ab I3, )
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MPC cost function:
Wp i .2 wp . . ikl
Tweo(b) =" 1&g+ " (163, + |ab I, )

@ w, prediction horizon length

» & predictions of ¢ in timesteps #*%, k =1,..., w, conditioned to measure in
> ||x|[% = x'Hx
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6ﬂ-f°. 2 MPC cost function ueadm

MPC cost function:
Wp Ll 2 wp Ll L
Twpc(b) =D " &g+ " (107, + | THY|Z,
k=0 k=1

@ w, prediction horizon length

» &/t U predictions of ¢ in timesteps ¢, k=1, ..., w, conditioned to measure in
> [|x| = xHx

@ Q, Ry, Rap positive and semi-positive definite diagonal weight matrices
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MPC cost function:

Wp o .2 wp . . . .
Tuec(b) =" 18 g+ "7 (16|, + [0, )

@ w, prediction horizon length
» & predictions of ¢ in timesteps #*%, k =1,..., w, conditioned to measure in
> [|x| = xHx
@ Q, Ry, Ray positive and semi-positive definite diagonal weight matrices
» Errors state
prediCti.O”S &R = (&/+ku)’ {rod C(; } Pl
» Actuation cost Ci
» Input variability
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6—ﬂ-f°. 2 MPC cost function ueadm

MPC cost function:

e vV V o

Wp NPT Wp T L
Tweo(b) =" 1&g+ > " (1643, + |ab I3, )

w, prediction horizon length

&V predictions of ¢ in timesteps #%, k =1,..., w, conditioned to measure in
Ix]% = x'Hx

Q, Ry, Ry positive and semi-positive definite diagonal weight matrices
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167 4IE, = (BK) | 0 Ry, O | B
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6—ﬂ-f°. 2 MPC cost function ueadm

MPC cost function:

Wp ~j P2 Wp . . . .
Tupc(b) =Y " @)+ " (I0TR|E, + (| A6,
k=0 k=1

@ w, prediction horizon length

» & predictions of ¢ in timesteps #*%, k =1,..., w, conditioned to measure in

> [|x]|% = x'Hx

@ Q, Ry, Ray positive and semi-positive definite diagonal weight matrices

" e | oy [ 2] s
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» Actuation cost 0 0 Rab,

» Input variability
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6ﬂ—fﬂ, 2 MPC cost function ueadm

MPC cost function:
Tupc(b) =37 (&g + 5" (67K, + | abHIE, )
@ w, prediction horizon length
» &k predictions of ¢ in timesteps #*% k=1,..., w, conditioned to measure in #
> |Ix|[} = x'Hx
@ Q, Ry, Ry positive and semi-positive definite diagonal weight matrices

All parameters included in a single vector n € RV7:
n = [Wp,Qc,, Qc,, Re, , Ao, . Ry . Ravy  Rab, , Rab,]-
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6ﬁ-f? MPC cost function ueadm
All parameters included in a single vector n € R"7:
n = [Wp,Qc, . Qc,, Roy . Rb, . Aoy . Raby, . R, . Rab,]-

Control results ¢ = ¢(n) are dependent on the choice of the hyperparameter vector |

L. Marra MPC to turbulent flows
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& Tuning parameters cost function ueam

Running the control algorithm for N; timesteps, global control performance can be assessed by the
following cost function:

Jso(n) = %Z:I; Z,N; (5{‘(77))2

L. Marra MPC to turbulent flows 22/37



& Tuning parameters cost function ueam

Running the control algorithm for N; timesteps, global control performance can be assessed by the
following cost function:

Jso(n) = %Z:I; Z,N; (5{‘(”))2

Parameters in n are optimized by maximizing control
performance the minimizing Jgo.- J

L. Marra MPC to turbulent flows 22/37



€ Bayesian optimization

The tuning problem is explained by the following optimization problem:

Nopt = arg min - Jpo(n)
neH

» H c R is a hyper-rectangle of the type n € [n™", n™*]
» Jso behaves as a "black box" function

L. Marra MPC to turbulent flows
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€| Bayesian optimization ucdm

The tuning problem is explained by the following optimization problem:

Nopt = arg min - Jpo(n)
neH

» H c R is a hyper-rectangle of the type n € [n™", n™*]
» Jso behaves as a "black box" function

Bayesian optimization builds a An acquisition process iteratively
probabilistic model of 750 proposes a new sampling point in the
domain in order to find the minimum.

A

» Gaussian process (GP) is used
Balance between exploration and
exploitation.

Given the data the posterior
distribution is updated

L. Marra MPC to turbulent flows 23/37



6ﬁ—f? Results: tuning and noise effects
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Without tuning
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Results: tuning and noise effects

ucdm
Without tuning With tuning
. . . . —Ideal data
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Actuation manifold from snapshots data




Methodology flowchart

Flow data collection Data-driven manifold learning
b = [bi, b2, b3]
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~
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o
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Flow reconstruction for arbitrary aerodynamic parameters
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L. Marra MPC to turbulent flows
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i ISOMAP

» Snapshotsdatau;,i=1,..., M

L

Sesenas

x>

ucadm

@ Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
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i ISOMAP ueam

» Snapshotsdatau;,i=1,..., M

» Build the euclidean distance matrix D among
snapshots

@ Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
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i ISOMAP ueam

» Snapshotsdatau;,i=1,..., M
» Build the euclidean distance matrix D among
snapshots

» Approximate geodesic distance matrix Dg:

@ Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
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» Approximate geodesic distance matrix Dg:
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i ISOMAP ueam

» Snapshotsdatau;,i=1,..., M

» Build the euclidean distance matrix D among
snapshots

» Approximate geodesic distance matrix Dg:

e Construct neighbourhood graph

e Compute shortest path across
graph (e.g., Floyd-Warshall
method)

» Project data into low-dimensional space (MDS)
retaining n coordinates

@ Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
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Actuation manifold sections
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Actuation manifold interpretation

3-2-10 1 2 3
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2

ISOMAP pseudomodes

ucadm

Actuation

Boat tailing —p1, Cp Magnus —p,, Cr, Stagnation point —p3

Wake response

Vortex shedding —Phase + amplitude

pr = 5% P2 = b1 + bp + bs ps = b
(Base-bleeding/boat-tailing) (Magnus) (Stagnation point control)
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Gﬂ—ﬁ. 2 Decoding performance ucam
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MPC, imitation and reinforcement learning




The idea

ucadm

©® OO

L. Marra

The ‘student’
(NN policy)

@ Unsafe training with reinforcement learning (RL)
@ Faster (direct mapping)
@ Less data hungry after imitation
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6ﬂ-ﬁ. ® The method ucam

Control authority

on expert
(MPC)
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Control authority
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(MPC)
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6ﬁ—f? The method

Control authority
on expert
(MPC)

Experience
replay buffer

Parallel policy
learning
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6—ﬂ-fa. ® The method ucam

Control authority
on expert
(MPC)

Experience e h
replay buffer

Train the policy: Initially BC (supervised learning)

Rollout policy: Deploy policy on plant model (short

Parallel policy time) and ask feedback to expert on the final state

learning

Aggregate data: Add new state-action pairs to the
experience buffer

Retrain: Train the model on the updated experience
buffer

(. J
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ﬁf The method

Control authority
on expert
(MPC)

Control
authority on
trained policy

Experience
replay buffer

Parallel policy
learning

L. Marra

MPC to turbulent flows
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6ﬂ-ﬁ. ® The method ucam

Control authority Control Policy
on expert authority on fine-tuning
(MPC) trained policy (RL)

Experience
replay buffer

Parallel policy
learning
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6ﬂ—f°. ° Test case ucam

Kuramoto-Sivashinsky (KS) equation:

ax x . 9%x  9*x
ot TXog = ~o¢ ~ ot
» State x, time t, spatial coordinate ¢
» Domainin [0, L], with L = 22
> x(&t)=x(E+ L)
» Sampling on 64 collocation points

@ Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal
Society A, 475(2231), 20190351.
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at T Xog T "o T o

x(&,t)
» State x, time t, spatial coordinate & I /-""\ /\
» Domainin [0, L], with L = 22 V \__._,.-/ \/

> x(&t)=x(E+ L) 0 L
» Sampling on 64 collocation points

m"

@ Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal
Society A, 475(2231), 20190351.
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6ﬁ—f? Test case

ucadm

Kuramoto—Sivashinsky (KS) equation:

8%x

+X5_ 3752_354+¢

| 2
>
>
>
>

State x, time t, spatial coordinate ¢
Domain in [0, L], with L = 22
X&) =x(E+L1)

Sampling on 64 collocation points

¢ is a 4-dimensional Gaussian
supported actuation

22 8000
6000
w11 @’ 4000
2000

0 T T v v
0 1000 2000 3000 4000 5000 0
t

&1, &2, &3 — squared dominant Fourier coefficients

@ Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal

Society A, 475(2231), 20190351.
L. Marra
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6ﬁ—f? Test case

ucadm

Kuramoto-Sivashinsky (KS) equation:

ax x . 9%x  9*x
ot TXgE = ~og ~om + O

State x, time t, spatial coordinate ¢

T — x(&,t) —— ¢ 1)
Domain in [0, L], with L = 22

TR
N

1
x(& )=x(E+L1)

Sampling on 64 collocation points 0

¢ is a 4-dimensional Gaussian
supported actuation

vVvyVvyTVyyeyw

Learning task:

m"

Guide the KS solution from a random initial condition to the unstable equilibrium point E;.

Failure — not reaching the target within a threshold in an episode.

@ Bucci, M. A., et al. (2019). Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal

Society A, 475(2231), 20190351.
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6ﬂ-f°_ 2 The expert ucam

ep:0—-t=0.0
4 state target
2 4
’3
w04
=
_2 4
_4 4
0 5 10 15 20
3

* Plant model from data-driven Operator Inference with POD on 17 modes and model dependencies up to 3@
polynomial order

** MPC with full-state feedback

@ Kramer, B., et al. (2024). Learning nonlinear reduced models from data with operator inference. Annual Review of
Fluid Mechanics, 56(1), 521-548.
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& The student ucam

W/o policy rollouts on plant model...
0.25 . . : :
§ z Behavioral
[} .
01515 cloning
e s
= o
0.05 - . - -
25000 31250 37500 43750 50000
# mpc transitions
ep.:0-t=0.0
5<
o 0
<
_5<
0 5 10 15 20
3

* Policy with sparse sensors feedback (8 equispaced sensors
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