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Motivation

» Annular Hall thrusters: mature and high performance Electric Propulsion

» Need for low-power: downscaling is challenging (laws, heating, efficiency, manufacturing, cathode...)

» Candidate: Cylindrical Hall Thruster (CHT)
O Volume-to-surface ratio, wall losses
O Central pole heating/erosion
Q Room for B

» Non-conventional design

» Few prototypes

» Experimental data necessary:
Q Optimization
O Understanding physics (e.g. transport)
O Validate models
O Adapted neutralizer
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Objectives & approach

Optimize CHT
performance

Adapt neutralizer

Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin

Design 2 low-power CHTs

Modularity (B, injector...)

Characterize performance &
plasma

Develop diagnostics

Test with various types of
cathodes

Design cathode (student)

Cathodeless configuration
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» Two emissive probes built & used with ECRT
Hall thrusters

» 200 W prototype: 2 gases, 5 cathodes

1
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» Characterization:
O Far-field measurements

< Langmuir Probe (T,, ¢, n), Retarding Potential Analyzer
(IVDF), Faraday Cup (j;)

% Current oscillations

Q Internal discharge and near-field measurements

X/

< Laser-Induced Fluorescence spectroscopy (in plane)
< Xenon ion and atom axial VDF reconstruction

|B| = 66.0 mT
Upp = 0.83 km/s

lons, axis, z =-20
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Set-up

Axial velocity
r-z measurements

Spectra modeling




Results: overview

Simulations

» Parametric studies on CHT geometry
Diagnostics

» Two emissive probes built & used with ECRT

Hall thrusters
» 200 W prototype: 2 gases, 5 cathodes

» Characterization:
O Far-field measurements

< Langmuir Probe (T,, ¢, n), Retarding Potential Analyzer
(IVDF), Faraday Cup (j;)

% Current oscillations Calibration
Q Internal discharge and near-field measurements i 6 = FitT =96%
500 - etrende 95% CI (0x, = = 0.98) -
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Q Thrust and probe measurements 100 -
% Mechanically amplified hanging pendulum thrust balance I R
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Performance characterization
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Performance characterization
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Performance characterization

Thrust balance

» Calibration procedure to isolate real thrust from external effects

» Thrust increases with m, & V4 in covered range

» nr depends on V4, maximum for 350V, 0.4 mg s-1, ~325 W

Q Saturates with P, for all m,

Faraday Cup

» Plume asymmetries (cathode, injector, coils, alignment)
» Divergence & current utilization

O Low, strongly affected by V4, not by m,

> Propellant utilization >1 — Xe?*, Xe3*

Retarding Potential Analyzer

» lons within beam mostly come from main ionization region

> Significant slow tail lowers (v;), specifically on axis & at |@]| = 50°
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Performance characterization Indirect performance
m/2

Thrust balance P, = ﬂ:rzj (E;)(0)j;(0)| sin 6| d6.
—m/f2
: : : x/2
» Calibration procedure to isolate real thrust from external effects - (6)(0,)(6) cos | sin 6ld6

—x /2

» Thrust increases with m, & V4 in covered range

> mr depends on Vg, maximum for 350V, 0.4 mg s-1, ~325 W > Good agreement direct/indirect

Q Saturates with P4 for all m, > Newr & Naip Shape the thrust
Faraday Cup efficiency
. o _ . O main drivers of efficiency losses
» Plume asymmetries (cathode, injector, coils, alignment) in this device

» Divergence & current utilization

O Low, strongly affected by V4, not by m,
2+ XeS+

» B must be optimized

» Propellant utilization >1 — Xe Q Maximize j;, T, minimize
divergence

Retarding Potential Analyzer o
O Increase anode shielding

» lons within beam mostly come from main ionization region

> Significant slow tail lowers (v;), specifically on axis & at |#]| = 50°
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Transient & oscillations
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Transient & oscillations
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» lon energy & current change
along transient

134-136s

f kHz
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» Self bicoherence I; — I;: non-linear wave coupling
O Harmonics of 28 kHz & 213 kHz

O Non-linear coupling 28 & 213 kHz — Three Wave Coupling

* fo-fi, L+h -2 f2+2fi
O No interaction f, = 7.4 kHz & rest of spectrum
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Remaining PhD work

» Finalization and submission of journal paper on direct & indirect thrust measurements

» Thesis writing

Continuation of Hall research

» 200 W CHT design iteration (efficiency, thermal, erosion,
symmetry...) & ExB characterization

» 100 W CHT: ignited with MUSIC (MS/no MS, 2 injectors, 2 coils
configurations)

> 1 A hollow cathode
» HET test bench automation

» Investigation of instabilities in these devices with new diagnostics

Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin




Achievements

» Presentation & paper for the international Space Propulsion Conference (SPC) 2021
Q Design and preliminary study of a 200W Cylindrical Hall Thruster
» Presentation for the online MicroPropulsion and CubeSats Workshop (MPCS) 2021
Q Development of a low-power Cylindrical Hall Thruster
o » Presentation for the online IEPC Student Summer Competition 2021
§ Q 200 W Cylindrical Hall Thruster design and preliminary testing
qu » Presentation & paper for the International Electric Propulsion Conference (IEPC) 2022
S Q Characterization of a low-power Cylindrical Hall Thruster
- » Presentation & paper for the European Conference for Aerospace Sciences (EUCASS) 2023
Q Measurements of xenon ions and atoms velocity in Cylindrical Hall Thruster with Laser-Induced Fluorescence spectroscopy
» Presentation & paper for the International Electric Propulsion Conference (IEPC) 2024
Q Direct thrust measurements of a 200 W Cylindrical Hall Thruster
Q Design, assembly and validation test of a sub-1Amp LaB6 hollow cathode (co-author, presentation and paper writing by TFM student)
» Research stay 2022: ICARE laboratory, Centre National de la Recherche Scientifique (CNRS)
% QO Test campaign for the characterization of the CHT plume with electrostatic plasma diagnostics
&a » Research stay 2023: ICARE laboratory, Centre National de la Recherche Scientifique (CNRS)
QO Test campaign for the characterization of the CHT plume with optical diagnostics (LIF)
§ » Journal paper published in Journal of Applied Physics
= Q Plume characterization of a low-power Cylindrical Hall Thruster
% » Journal paper to be submitted to journal (in writing)
s Q Performance analysis of a 200 W Cylindrical Hall Thruster using direct thrust measurements and plasma diagnostics
;3; >  PROMETEO, ESPEOS, COMIT, ET.PACK, SUPERLEO, E » TFM co-supervision: Simulation and design of hollow cathode
g MARTINLARA PLUS ) » TFM co-supervision: Assembly and testing of hollow cathode

Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin




email:
web: ep2.uc3m.es"
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Thank you! Questions?

, ep2@uc3m.es

9 Twitter: @ep2lab
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Why further iterate on CHT200 design?

Optimize thruster to enable investigation:

d reduce wall losses - slower heating - more time for diagnostics & safer operation
[ less frequent need for components replacement (coils, ceramics, anode) - time & cost savings
d discharge stabilization - repeatability & adapted diagnostics

Injector sputtering, Asymmetric injection Overheating Erosion




Thrust balance

» Calibration procedure to isolate real thrust from external effects

7 —
. T » Thrust increases with m, & V4 in covered range
i B » mnr depends on Vg, maximum for 350V, 0.4 mg s-1, ~¥325 W
Z h :
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Indirect thrust & partial efficiencies

> Neur & Ngipy Shape the thrust efficiency (and energy)
Q main drivers of efficiency losses in this device

> MNyo1 NOt very conclusive, but possible effect of CRP
> MNene Very low

“Patchwork” of data:
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Retarding Potential Analyzer Some IVDF examples

> |IVDF measured for a set of (g, V,, 0) Mo 7 50 seem, Yo 7200V 7700 e ZAoeem o 7020
544 *+ Ui =150km s—1 5 + 7; =20.7km s~ !
kS (v;) = 14.6 km s~ ! s g (v;) = 18.1 km s™1
=g - =) . ‘
T g e <« g > v; assumes singly-charged ions
\‘\x 0 | | - - 0 1 T T T T
Tm 0.30 mg s~ 1, 250 V 0 b 10 . 15 20 ° ° 10_ K _15 0
g 0.30 mgs—1, 350 V v, km s Vi, Km s
~ 0.30 mg s—1, 400 V
& 0.35 mg s_i, 250 V
- 0.35mgs™+, 300V . . e
0.35 me ™1, 360 V Most probable ion velocity V; (peak)
.35 mgs—+,
; 0.40 mg s—1, 250 V D W|de beam
~®- 0.40 mg s*i, 350 V
= 0.45mgs—*, 350 V . g g .
: :  Clear drop outside beam for high voltages (like previous
60 80 measurements)

O Nearly flat at low voltage
» lons within beam mostly come from main ionization region

% B [vf(w)dv

“ Average ion velocity (v;) ((v) = o

e 0 Little gain in (v;) past 350 V
A O Off-centered, asymmetric, hollow beam
< marked at high voltage, not visible in j;(8)

> Significant slow tail lowers (v;), specifically on axis & at |@]| = 50°

)




IVDF overview
= 300 V

Combined j; & E; information

ED : Indirect beam power & thrust estimation
|o|. = g 5 ﬂ'.,-"'Z
g a P, = mr J | (E;)(0)ji(0)]| sin 8| d6.
—ﬂ";'z

? x/2
< jl . F = mr2 ™ / Ji(@) v, )(6) cos 8] sin B|d6
S l‘.l g € J-x/2
™ 25 i [
S i A
I ; =
g :

0 . .

95 Limits/assumptions:
Ei O Multiply-charged ions (ny > 1)
§ % Q Axisymmetry & off-centered
L beam
S
Q Zero potential energy

2 Q Set-up limits due to offset
é (alignment, missing wide angles)
< O Probes bias optimization
£ O lon momentum only
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» Objectives:
- Extend capabilities to very low power (50 — 100 W)
Apply knowledge from CHT200

Explore magnetic shielding in CHT

Explore alternative neutralizers

» Design features:
- Smaller channel length/diameter, chamfer

Porous ceramic / slit injector: homogeneity, sputtering
Thick wack wall for erosion

2 electromagnets & optional shunts: MS/non-MS
Thermal management (coils)

Probes accessibility

No radial connection, exposed biased component
Adaptable to alternative neutralizers

Ceramic front plate for arcs

Vented inner volume

MS shunts

Smaller L/D
Chamfer

CHT100

Porous injector

Thermal
management

Axial access Neutralizer




Ignition with MUSIC cathode

> Tested over a few days before end of Aliena cathode lease Porous injector
- Succesful ignition with porous ceramic injector & slit
- Direct/cusped coils configuration & various currents
- MS/non-MS (no shunts)

- Preliminary result show promising performance (T)

Visible wall shielding in MS PEEK gas injector overheating — ceramic

Partially obstructed gas line limiting I

Slit injector




Detailed objectives of future experimental HET-related work for EP2

» Design of 100 W CHT prototype
aQ Downscaling of 200 W CHT

A Improvements from simulations and tests of first protot
< Channel geometry
% Gas injection

X/

< Mechanical and thermal aspects
A Magnetic shielding

O Towards dry and/or power-free cathode

230 .
» TFM co-supervision: 1A hollow cathode design, assembly, testingl 180 o
Q Thermal simulations, materials selection, components sizing = 120 celce
Q Procurement and assembly il L e ’
Q Preliminary tests with xenon: 80
< Ignition characterization (300W, 500V, 12 sccm) 1;8 .
< Triode and diode test: matrix of mass flow rates and currents 80 .,
. X “ge
» Test bench automation for Hall thrusters and cathode > Zg . oo
» Optimization CHT200 20 T ’
0
» Instabilities with dedicated diagnostics 0 05 1 15 2 25 3
la
®0,8scem Vk @ 1scem Vk  ® 1.2scem Vk @ 0.6scem Vk

Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin




»
»
»

athode spectra banoas T

Simultaneous spectras of I; and CRP, evolution through 2 changes of mode . Zj{i‘;nﬂa'
d

- Low f components dominantin I GND

- High f component dominant in CRP: related to cathode? CRP

¢cathode

- High f remains in cathode in all modes
- 30-50 Hz nearly absent from cathode initially
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Simultaneous spectras of I; and CRP, evolution through 1 change of mode

- Similar behavior

- High f present in both modes
- Low f components growing in I; & CRP

Measurement n°193
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Measurement n°185

Example of case with: -
> <
. 5 200 - 0.65
- High f totally absent from I, g W :
0 - 0.00
- High f in CRP with very low amplitude compared to low f - "]
Ig: 0.72 A, mq: 3.5 scem, Vg: 350 V, CRP: -30 V // From signal: I,: 0.66 A, CRP: -36 V i 0.15 ?HMJ - S
< +YV7 > -
7 : 5 10 S e B L
%07 23 W
S;0.0— — . ——ry : 09; 318: -
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¢ Indicates that
O7500 250 0 250 5(30t 750 1000 1250 1500 - |nsta b|||ty Or|g|nates fr‘om
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Example of case with: % 0 L7 - instability dies out with
_ ' N delay in plume/cathode?
- High f totally absent from I s N
- High f in CRP with significant amplitude ?ﬂ \)J
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Summarizing observations on high frequency oscillations:

» appearing/disappearing spontaneously

appear to be associated to |arge diSCharge current & low thrust (inferred from TB displacement, assuming small & slow drifts)
altering IVDF

seems associated to CRP closerto 0
Q likely due to larger cathode heating because of large 14
O observed for at least two test points

Y VYV

affected by ignition procedure (triggers?)
related to ignition transient? over seconds to tens of minutes...

cathode related?
thruster or cathode thermal inertia affecting emission & triggering ionization/acoustic instabilities?
relation with cathode/thruster surface state?

YVVV VY

5P iZJcl’:m



Identification: inputs from literature and Aliena

Potrivitu and Xu Journal of Electric Propulsion (2022) 1:6

- Insufficient spatial information to determine dispersion relation e/ /o 0T 101007/ 544205 022-00005
- ~210 kHz falls in range of: -
- lon Transit Time (Hall, little confirmed experimental evidence, seen with models, stability 098 o /‘»A"‘M\M
with VB?) e I“W’\
. . . I . . 4
- lon Acoustic (cathode in plume mode triggered by m—d/self—heatmg, uncertain, very o
c =
broadband, often closer to MHz) : |
- Iz range 0.73 — 1.2 A with m, = 0.8 sccm, while indicated 0.9 — 1.65 sccm Xe (diode) — “starved”
cathode
. . . ar ) JJA/'MJ.’N \*f"'\‘v\ 1
Q Originating fom cathode? E N
kil
L")
- MUSIC HC in diode: No peaks except broad ~85 kHz for 0.9-1A  ' A
- MUSIC HC coupled with MUSIC-HT: BM & 600 kHz-1.3 MHz broadband with peak, associated wglth d Py 18 w
|AT or ExB drifts owent frea pesk e FITT FBM, Hz
20-01 L 270000 | | 35273
» Possible match with expected BM ~~——— 7P and ITT ~ ‘frequenues 15.0 4 | .
271tL c125 ] ,l -210000 | - 25842
» although difficult to predict given geometry of ionization & acceleration regions Jm.o-,," [ 180000 | 21127

1
754 L 150000 [} 16411

Region possible considering 5.0 4
second peak

E. Y. Choueiri, Phys. Plasmas 8, 1411 (2001); doi: 10.1063/1.1354644 Best match with LIF 2.5 ¥ . . . .
Y. Esipchuck, A. Morozov, G. Tilinin, and A. Trofimov, Sov. Phys. Tech. Phys. 18, 928 (1974). 2000 4000 6000 8000 10000

5?3 ucam

120000 11696

—- 90000 6980



100'; 300V, 4.5 sccm — 4b _ 300V, 4 scem — 3
What do models show?
1071 4
» HYPHEN: ]
- Similar observation by Maddaloni with HET ;
w 1077
- BM, ITT & their interaction
- Inaki with CHT: BM and ~200 kHz > .
10_3-504
;) 3 ml(;o:) o 2(I)0 3(I)O 4(I)0 500-0 1(I)0 2(I)0 3(I)O 4(I)0 500
Frequency, kHz Frequency, kHz
Current Oscillations Spectrum
1D code Poli SPT100, similar spectral shape: o ”
- BM + harmonic(s) BM"
) IT_I_ (?) > 100
- Coupling: ITT + BM?, and ITT £ BM" 300
- ITT associated to transport ol e o
- Accompanied by strong perturbation in E propagating downstream 190
~ Could explain seeing it in CRP " [J e
0
l'l | {;U ‘Z(IH.] Ii(_llU l(.lJ{l T)lll(.]
Frequency [kHz|
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