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Motivation
Ø Annular Hall thrusters: mature and high performance Electric Propulsion
Ø Need for low-power: downscaling is challenging (laws, heating, efficiency, manufacturing, cathode…)
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Ø Candidate: Cylindrical Hall Thruster (CHT)
q Volume-to-surface ratio, wall losses
q Central pole heating/erosion
q Room for B

Ø Non-conventional design
Ø Few prototypes
Ø Experimental data necessary:

q Optimization
q Understanding physics (e.g. transport)
q Validate models
q Adapted neutralizer

AHT

CHT



Objectives & approach
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Optimize CHT 
performance

Design 2 low-power CHTs

Modularity (B, injector...)

Characterize performance & 
plasma

Develop diagnostics

Adapt neutralizer

Test with various types of 
cathodes

Design cathode (student)

Cathodeless configuration

Couple numerical 
work

Experimental inputs for models

Parametric analysis for design



Results: overview
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Simulations
Ø Parametric studies on CHT geometry

Diagnostics
Ø Two emissive probes built & used with ECRT

Hall thrusters
Ø 200 W prototype built and ignited with two gases and five 

cathodes

Ø Characterization test campaigns:

q Far-field measurements

v Langmuir Probe ("#, %, &), Retarding Potential Analyzer 

(IVDF), Faraday Cup (())
v Current oscillations

q Internal discharge and near-field measurements

v Laser-Induced Fluorescence spectroscopy (2D plane)

v Xenon ion and atom axial VDF reconstruction

q Direct thrust measurements

New experimentally
informed
simulations with

HYPHEN (Iñaki )
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ECRT Emissive probe

Simulations
Ø Parametric studies on CHT geometry

Diagnostics
Ø Two emissive probes built & used with ECRT

Hall thrusters
Ø 200 W prototype built and ignited with two gases and five 

cathodes

Ø Characterization test campaigns:

q Far-field measurements

v Langmuir Probe (!", $, %), Retarding Potential Analyzer 

(IVDF), Faraday Cup ('()
v Current oscillations

q Internal discharge and near-field measurements

v Laser-Induced Fluorescence spectroscopy (2D plane)

v Xenon ion and atom axial VDF reconstruction

q Direct thrust measurements
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Simulations
Ø Parametric studies on CHT geometry
Diagnostics
Ø Two emissive probes built & used with ECRT
Hall thrusters
Ø 200 W prototype: 2 gases, 5 cathodes
Ø Characterization:

q Far-field measurements
v Langmuir Probe (!", $, %), Retarding Potential Analyzer 

(IVDF), Faraday Cup ('()
v Current oscillations

q Internal discharge and near-field measurements
v Laser-Induced Fluorescence spectroscopy (2D plane)
v Xenon ion and atom axial VDF reconstruction

q Direct thrust measurements

LP

FC

RPA
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"⃗ #
28°

Detection

Excitation

(̇)

Simulations
Ø Parametric studies on CHT geometry
Diagnostics
Ø Two emissive probes built & used with ECRT
Hall thrusters
Ø 200 W prototype: 2 gases, 5 cathodes
Ø Characterization:

q Far-field measurements
v Langmuir Probe (*+, -, .), Retarding Potential Analyzer 

(IVDF), Faraday Cup (01)
v Current oscillations

q Internal discharge and near-field measurements
v Laser-Induced Fluorescence spectroscopy (in plane)
v Xenon ion and atom axial VDF reconstruction

q Direct thrust measurements

Set-up

Axial velocity
r-z measurements

Spectra modeling



Results: overview

8

Simulations
Ø Parametric studies on CHT geometry

Diagnostics
Ø Two emissive probes built & used with ECRT

Hall thrusters
Ø 200 W prototype: 2 gases, 5 cathodes

Ø Characterization:
q Far-field measurements

v Langmuir Probe (!", $, %), Retarding Potential Analyzer 
(IVDF), Faraday Cup ('()

v Current oscillations

q Internal discharge and near-field measurements
v Laser-Induced Fluorescence spectroscopy (2D plane)

v Xenon ion and atom axial VDF reconstruction

q Thrust and probe measurements
v Mechanically amplified hanging pendulum thrust balance

Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin

Set-up

Calibration
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Performance characterization
Thrust balance

Ø Calibration procedure to isolate real thrust from external effects

Ø Thrust increases with "̇# & %& in covered range

Ø '( depends on )*, maximum for 350 V, 0.4 mg s-1, ~325 W

q Saturates with +& for all ,̇-

Faraday Cup

Ø Plume asymmetries (cathode, injector, coils, alignment)
Ø Divergence & current utilization

q Low, strongly affected by %&, not by ,̇-
Ø Propellant utilization >1 → Xe12, Xe42

Retarding Potential Analyzer

Ø Ions within beam mostly come from main ionization region

Ø Significant slow tail lowers 56 , specifically on axis & at 7 ≳ 9:°
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Thrust balance

Ø Calibration procedure to isolate real thrust from external effects

Ø Thrust increases with "̇# & %& in covered range

Ø '( depends on )*, maximum for 350 V, 0.4 mg s-1, ~325 W

q Saturates with +& for all ,̇-

Faraday Cup

Ø Plume asymmetries (cathode, injector, coils, alignment)
Ø Divergence & current utilization

q Low, strongly affected by %&, not by ,̇-
Ø Propellant utilization >1 → Xe12, Xe42

Retarding Potential Analyzer

Ø Ions within beam mostly come from main ionization region

Ø Significant slow tail lowers 56 , specifically on axis & at 7 ≳ 9:°

Performance characterization
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Thrust balance

Ø Calibration procedure to isolate real thrust from external effects

Ø Thrust increases with "̇# & %& in covered range

Ø '( depends on )*, maximum for 350 V, 0.4 mg s-1, ~325 W

q Saturates with +& for all ,̇-

Faraday Cup

Ø Plume asymmetries (cathode, injector, coils, alignment)
Ø Divergence & current utilization

q Low, strongly affected by %&, not by ,̇-
Ø Propellant utilization >1 → Xe12, Xe42

Retarding Potential Analyzer

Ø Ions within beam mostly come from main ionization region

Ø Significant slow tail lowers 56 , specifically on axis & at 7 ≳ 9:°

Most probable velocity

Average velocity

Performance characterization
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Thrust balance

Ø Calibration procedure to isolate real thrust from external effects

Ø Thrust increases with "̇# & %& in covered range

Ø '( depends on )*, maximum for 350 V, 0.4 mg s-1, ~325 W

q Saturates with +& for all ,̇-

Faraday Cup

Ø Plume asymmetries (cathode, injector, coils, alignment)
Ø Divergence & current utilization

q Low, strongly affected by %&, not by ,̇-
Ø Propellant utilization >1 → Xe12, Xe42

Retarding Potential Analyzer

Ø Ions within beam mostly come from main ionization region

Ø Significant slow tail lowers 56 , specifically on axis & at 7 ≳ 9:°

Ø Good agreement direct/indirect

Ø '<=> & '&?@ shape the thrust
efficiency
q main drivers of efficiency losses

in this device

Ø B must be optimized

q Maximize A6, B, minimize
divergence

q Increase anode shielding

Indirect performancePerformance characterization



Ø Time evolution of discharge current frequency spectrum

Ø Correlation with events in discharge behavior
q transient
q mode transitions

Suspected link: transient – high !" – high #

13

Transient & oscillations

PSD time series

Logs
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Transient & oscillations

PSD time series

Logs
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Ø Ion energy & current change
along transient
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Associated to mode change:

q Current level
q Frequency spectrum
q Ion beam properties
q Electron transport
q CRP ⟶ 0

134-136s

Time

Time
Ø Self bicoherence &" − &": non-linear wave coupling

q Harmonics of 28 kHz & 213 kHz
q Non-linear coupling 28 & 213 kHz – Three Wave Coupling

v 89−8:, 89 + 8:,     89 − 28:, 89 + 28:
q No interaction 8+ ≈ 7.4 kHz & rest of spectrum
q Interaction 89 with all smaller frequencies: broadband

Ø Possible identification:

q Ionization instability: breathing mode ~ ?@?A
9BC

q Ion Acoustic Turbulence
q Ion Transit Time Instability ~?@C
q Ion-Ion Two Stream Instability?



Remaining PhD work

Ø Finalization and submission of journal paper on direct & indirect thrust measurements

Ø Thesis writing
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Continuation of Hall research
Ø 200 W CHT design iteration (efficiency, thermal, erosion, 

symmetry…) & ExB characterization

Ø 100 W CHT: ignited with MUSIC (MS/no MS, 2 injectors, 2 coils
configurations)

Ø 1 A hollow cathode
Ø HET test bench automation

Ø Investigation of instabilities in these devices with new diagnostics 



Achievements
Ø Presentation & paper for the international Space Propulsion Conference (SPC) 2021

q Design and preliminary study of a 200W Cylindrical Hall Thruster
Ø Presentation for the online MicroPropulsion and CubeSats Workshop (MPCS) 2021

q Development of a low-power Cylindrical Hall Thruster
Ø Presentation for the online IEPC Student Summer Competition 2021

q 200 W Cylindrical Hall Thruster design and preliminary testing
Ø Presentation & paper for the International Electric Propulsion Conference (IEPC) 2022

q Characterization of a low-power Cylindrical Hall Thruster
Ø Presentation & paper for the European Conference for Aerospace Sciences (EUCASS) 2023

q Measurements of xenon ions and atoms velocity in Cylindrical Hall Thruster with Laser-Induced Fluorescence spectroscopy
Ø Presentation & paper for the International Electric Propulsion Conference (IEPC) 2024

q Direct thrust measurements of a 200 W Cylindrical Hall Thruster
q Design, assembly and validation test of a sub-1Amp LaB6 hollow cathode  (co-author, presentation and paper writing by TFM student)

Ø Research stay 2022: ICARE laboratory, Centre National de la Recherche Scientifique (CNRS)

q Test campaign for the characterization of the CHT plume with electrostatic plasma diagnostics

Ø Research stay 2023: ICARE laboratory, Centre National de la Recherche Scientifique (CNRS)

q Test campaign for the characterization of the CHT plume with optical diagnostics (LIF)

Ø Journal paper published in Journal of Applied Physics

q Plume characterization of a low-power Cylindrical Hall Thruster
Ø Journal paper to be submitted to journal (in writing)

q Performance analysis of a 200 W Cylindrical Hall Thruster using direct thrust measurements and plasma diagnostics

Ø PROMETEO, ESPEOS, COMIT, E.T.PACK, SUPERLEO,

MARTINLARA PLUS

17Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin

Co
nf

er
en

ce
s

St
ay

s
Pu

bl
ica

tio
ns

Pr
oj

ec
ts

Ot
he

r Ø TFM co-supervision: Simulation and design of hollow cathode

Ø TFM co-supervision: Assembly and testing of hollow cathode



Thank you! Questions?
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email: tperroti@pa.uc3m.es, ep2@uc3m.es
web: ep2.uc3m.es Twitter: @ep2lab
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mailto:tperroti@pa.uc3m.es


Back-up 
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Optimize thruster to enable investigation:
q reduce wall losses - slower heating - more time for diagnostics & safer operation
q less frequent need for components replacement (coils, ceramics, anode) - time & cost savings
q discharge stabilization - repeatability & adapted diagnostics

Injector sputtering, Asymmetric injection Overheating Erosion

20

Why further iterate on CHT200 design?
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Thrust balance

!" =
$%

2'( *̇+ + *̇-

Ø Calibration procedure to isolate real thrust from external effects

Ø Thrust increases with .̇/ & 12 in covered range

Ø 34 depends on 56, maximum for 350 V, 0.4 mg s-1, ~325 W

q Saturates with 72 for all *̇+

Ø !" ≪ best low-power CHTs

Ø No trend !" − '( in other low-power CHT: thruster-specific

Ø B must be optimized
q Maximize :;, $, minimize divergence

q Increase anode shielding from electron current & increase !-=> (one of the main CHT 
weak points)cc



Ø Plume asymmetries
q cathode, injector, coils, alignment

Ø Partial efficiencies obtained by integrating beam current density

22

Probe measurements

Ø Divergence & current utilization
q Strongly affected by !", not by $̇%

Ø Propellant utilization
q Sensitive to !" & '̇(
q >1 → Xe,-, Xe/-

Dispersion of 01
(>1 year scattered meas.)
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Rather good agreement with
direct thrust measurements

Indirect thrust & partial efficiencies

Ø !"#$ & !&'( shape the thrust efficiency (and energy)
q main drivers of efficiency losses in this device

Ø )*+, not very conclusive, but possible effect of CRP
Ø )-.- very low

“Patchwork“ of data:
• 2 campaigns
• 2 cathodes
• dispersion in /0
• Measurements in different

ignitions
• partial angular RPA scan
• Assumes singly-charged ions



Ø Plume asymmetries
q cathode, injector, coils, alignment

Ø Partial efficiencies obtained by integrating beam current density

24

Faraday cup

Ø Divergence & current utilization
q Strongly affected by !", not by $̇%

Ø Propellant utilization
q Sensitive to !" & '̇(
q >1 → Xe,-, Xe/-

Dispersion of 01
(>1 year scattered meas.)



Retarding Potential Analyzer

25

Some IVDF examples

!" assumes singly-charged ions

Most probable ion velocity #$% (peak)

q Wide beam
q Clear drop outside beam for high voltages (like previous

measurements)
q Nearly flat at low voltage

Ø Ions within beam mostly come from main ionization region

Average ion velocity $% ( !" = ∫ () ( *(
∫ ) ( *( ) 

q Little gain in $% past 350 V
q Off-centered, asymmetric, hollow beam

v marked at high voltage, not visible in +"(-)
Ø Significant slow tail lowers !" , specifically on axis & at / ≳ 12°

Ø IVDF measured for a set of (5̇6, 86, -)
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ṁ

a
=

0.
45

m
g/

s
ṁ
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Combined !" & $" information
Indirect beam power & thrust estimation 

Limits/assumptions:
q Multiply-charged ions (%& > 1)
q Axisymmetry & off-centered

beam
q Zero potential energy
q Set-up limits due to offset 

(alignment, missing wide angles)
q Probes bias optimization
q Ion momentum only

IVDF overview



CHT100
Ø Objectives:

- Extend capabilities to very low power (50 – 100 W)

- Apply knowledge from CHT200

- Explore magnetic shielding in CHT

- Explore alternative neutralizers

Ø Design features:

- Smaller channel length/diameter, chamfer
- Porous ceramic / slit injector: homogeneity, sputtering

- Thick wack wall for erosion
- 2 electromagnets & optional shunts: MS/non-MS

- Thermal management (coils)

- Probes accessibility

- No radial connection, exposed biased component

- Adaptable to alternative neutralizers

- Ceramic front plate for arcs

- Vented inner volume

27

Smaller L/D
Chamfer

MS shunts

2 EM

Neutralizer

Thermal 
management

Axial access

Porous injector



Ignition with MUSIC cathode
Ø Tested over a few days before end of Aliena cathode lease

- Succesful ignition with porous ceramic injector & slit
- Direct/cusped coils configuration & various currents
- MS/non-MS (no shunts)
- Preliminary result show promising performance (T)

28

PEEK gas injector overheating → ceramic
Partially obstructed gas line limiting "#

Visible wall shielding in MS

Porous injector

Slit injector



Detailed objectives of future experimental HET-related work for EP2
Ø Design of 100 W CHT prototype

q Downscaling of 200 W CHT
q Improvements from simulations and tests of first prototype

v Channel geometry
v Gas injection
v Mechanical and thermal aspects

q Magnetic shielding
q Towards dry and/or power-free cathode

Ø TFM co-supervision: 1A hollow cathode design, assembly, testing
q Thermal simulations, materials selection, components sizing
q Procurement and assembly
q Preliminary tests with xenon:

v Ignition characterization (300W, 500V, 12 sccm)
v Triode and diode test: matrix of mass flow rates and currents

Ø Test bench automation for Hall thrusters and cathode
Ø Optimization CHT200
Ø Instabilities with dedicated diagnostics

29Design, simulation and testing of low power Hall Effect Thrusters, T. Perrotin
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Simultaneous spectras of !" and #$%, evolution through 2 changes of mode

- Low & components dominant in !"
- High & component dominant in #$%: related to cathode?

- High & remains in cathode in all modes
- 30-50 Hz nearly absent from cathode initially
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File: scope 36 (Mon Oct 7 19:49:36 2024)
Id: 0.91 A, ṁa: 3.0 sccm, Vd: 300 V // From signal: Ia: 0.90 A, CRP: -14 V

Note: beforewsitch
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File: scope 37 (Mon Oct 7 19:51:34 2024)
Id: 0.82 A, ṁa: 3.0 sccm, Vd: 300 V // From signal: Ia: 0.81 A, CRP: -22 V

Note: beforewsitch
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File: scope 37 (Mon Oct 7 19:51:34 2024)
Id: 0.82 A, ṁa: 3.0 sccm, Vd: 300 V // From signal: Ia: 0.81 A, CRP: -22 V

Note: beforewsitch
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File: scope 38 (Mon Oct 7 19:53:34 2024)
Id: 0.76 A, ṁa: 3.0 sccm, Vd: 300 V // From signal: Ia: 0.75 A, CRP: -27 V

Note: afterwsitch
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File: scope 38 (Mon Oct 7 19:53:34 2024)
Id: 0.76 A, ṁa: 3.0 sccm, Vd: 300 V // From signal: Ia: 0.75 A, CRP: -27 V

Note: afterwsitch
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File: scope 45 (Tue Oct 8 22:46:10 2024)
Id: 0.81 A, ṁa: 2.5 sccm, Vd: 350 V // From signal: Ia: 0.80 A, CRP: -18 V

Note: RPAbeforefirstcurrentdrop
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File: scope 45 (Tue Oct 8 22:46:10 2024)
Id: 0.81 A, ṁa: 2.5 sccm, Vd: 350 V // From signal: Ia: 0.80 A, CRP: -18 V

Note: RPAbeforefirstcurrentdrop
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File: scope 46 (Tue Oct 8 22:54:26 2024)
Id: 0.70 A, ṁa: 2.5 sccm, Vd: 350 V // From signal: Ia: 0.69 A, CRP: -30 V

Note: RPAduringsecondcurrentdropto0.68
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File: scope 46 (Tue Oct 8 22:54:26 2024)
Id: 0.70 A, ṁa: 2.5 sccm, Vd: 350 V // From signal: Ia: 0.69 A, CRP: -30 V

Note: RPAduringsecondcurrentdropto0.68

Time

Simultaneous spectras of !" and #$%, evolution through 1 change of mode

- Similar behavior
- High & present in both modes
- Low & components growing in !" & CRP

1 2
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Example of case with:
- High ! totally absent from "#
- High ! in CRP with significant amplitude

Example of case with:
- High ! totally absent from "#
- High ! in CRP with very low amplitude compared to low !
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File: scope 34 (Fri Oct 4 01:38:22 2024)
Id: 0.72 A, ṁa: 3.5 sccm, Vd: 350 V, CRP: -30 V // From signal: Ia: 0.66 A, CRP: -36 V

Note: nocomment
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File: scope 34 (Fri Oct 4 01:38:22 2024)
Id: 0.72 A, ṁa: 3.5 sccm, Vd: 350 V, CRP: -30 V // From signal: Ia: 0.66 A, CRP: -36 V

Note: nocomment
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File: scope 44 (Tue Oct 8 18:53:34 2024)
Id: 0.73 A, ṁa: 3.5 sccm, Vd: 400 V, CRP: -34 V // From signal: Ia: 0.72 A, CRP: -34 V

Note: RPAscansimultaneouslowestId
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File: scope 44 (Tue Oct 8 18:53:34 2024)
Id: 0.73 A, ṁa: 3.5 sccm, Vd: 400 V, CRP: -34 V // From signal: Ia: 0.72 A, CRP: -34 V

Note: RPAscansimultaneouslowestId

Indicates that
- instability originates from

cathode?
- instability dies out with

delay in plume/cathode?



Summarizing observations on high frequency oscillations:

Ø appearing/disappearing spontaneously

Ø appear to be associated to large discharge current & low thrust (inferred from TB displacement, assuming small & slow drifts)

Ø altering IVDF
Ø seems associated to CRP closer to 0

q likely due to larger cathode heating because of large !"
q observed for at least two test points

Ø affected by ignition procedure (triggers?)
Ø related to ignition transient? over seconds to tens of minutes…

Ø cathode related?
Ø thruster or cathode thermal inertia affecting emission & triggering ionization/acoustic instabilities? 
Ø relation with cathode/thruster surface state?

33



- Insufficient spatial information to determine dispersion relation
- ~210 kHz falls in range of:

- Ion Transit Time (Hall, little confirmed experimental evidence, seen with models, stability
with ∇"?)

- Ion Acoustic (cathode in plume mode triggered by #$
&̇'

/self-heating, uncertain, very
broadband, often closer to MHz)
- )* range 0.73 – 1.2 A with +̇, = 0.8 sccm, while indicated 0.9 – 1.65 sccm Xe (diode) → “starved” 

cathode
q Originating fom cathode?

- MUSIC HC in diode: No peaks except broad ~85 kHz for 0.9-1A 
- MUSIC HC coupled with MUSIC-HT: BM & 600 kHz-1.3 MHz broadband with peak, associated with

IAT or ExB drifts

Ø Possible match with expected BM ~ ./.0
123 and ITT ~./3 frequencies, 

Ø although difficult to predict given geometry of ionization & acceleration regions
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Potrivitu and Xu Journal of Electric Propulsion (2022) 1:6 
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1D code Poli SPT100, similar spectral shape:
- BM + harmonic(s) BMn

- ITT (?)
- Coupling: ITT ± BM0, and ITT ± BMn

- ITT associated to transport

- Accompanied by strong perturbation in ! propagating downstream
- Could explain seeing it in CRP

What do models show?
Ø HYPHEN:

- Similar observation by Maddaloni with HET
- BM, ITT & their interaction

- Iñaki with CHT: BM and ~200 kHz 
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