

Advanced 2D Fluid Modelling of Hall Effect Thruster Discharges

Davide Poli

Pablo Fajardo Eduardo Ahedo

PhD In Aerospace Engineering Doctoral Meetings June 2025, Léganes

Motivation And Methodology

The problem of the anomalous transport

Onset of plasma instabilities

Enhanced cross-field mobility of electrons Reduced magnetic confinement

No predictive models of Hall Effect Thrusters

Methodology:

- Development of 1D and 2D time dependent fluid models
- Characterisation of onset and saturation of instabilities

Motivation And Methodology

Particle In Cell (PIC) codes are commonly used for ExB plasmas

FLUID MODELS

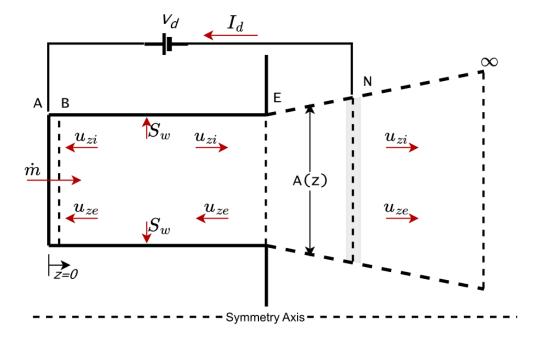
PROS

- Deal with macroscopic quantities
- Easier to interpret
- Can be very flexible with the physics included
- Can describe many instabilities

CONS

- Maxwellian VDF
- Lack of kinetic effects
- Delicate numerical algorithms
- Numerical diffusion

Combined use of PIC and fluid models can help characterizing the instabilities and their trigger mechanisms

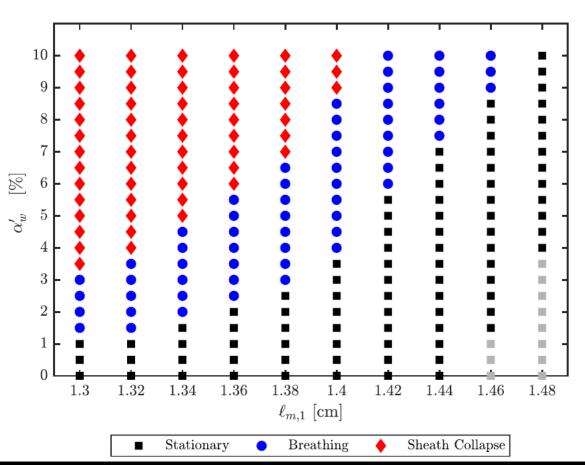


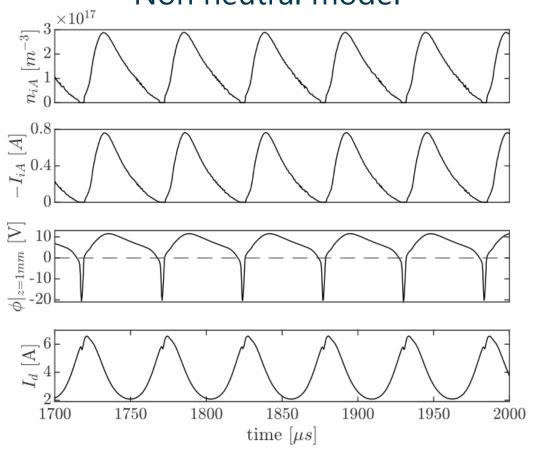
1D Quasineutral /Non-neutral Time Dependent Model

1D axial time dependent models of the Hall thruster discharge

- Resolving axial instabilities
- Performance analysis
- Parametric studies

D. Poli, E. Bello-Benítez, P. Fajardo, and E. Ahedo, Time-dependent axial fluid model of the Hall thruster discharge and its plume. 10.1088/1361-6463/ace2d0


D. Poli P. Fajardo, and E. Ahedo, A Non-neutral 1D Fluid Model of Hall Thruster Discharges: full electron inertia and anode sheath reversal 10.1088/1361-6595/ad6500



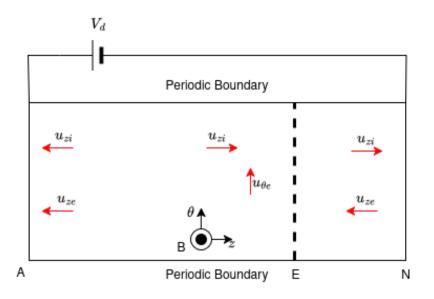
Breathing mode

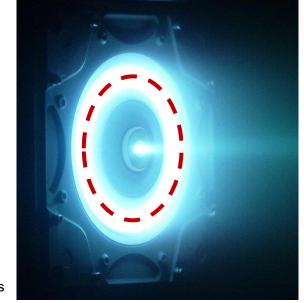
Quasi neutral model

Non neutral model

Axial-azimuthal model

Time dependent 2D model of the discharge

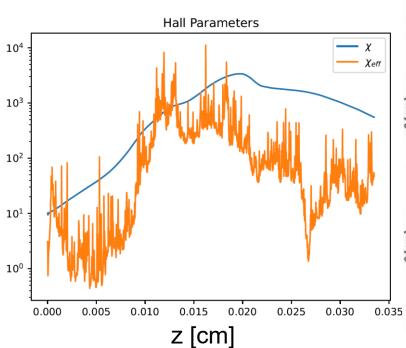

Model

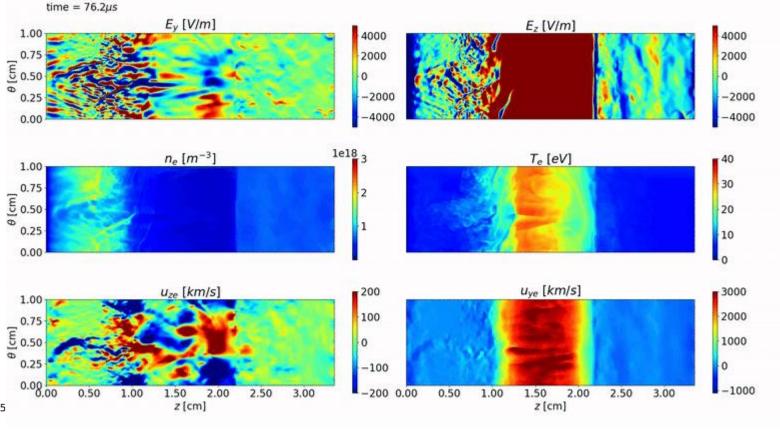

- Z-θ plane
- 3-fluid model
- Full electron inertia
- Non-neutral effects
- Neutral dynamics

Code

- Finite Volume based
- MPI parallelisation

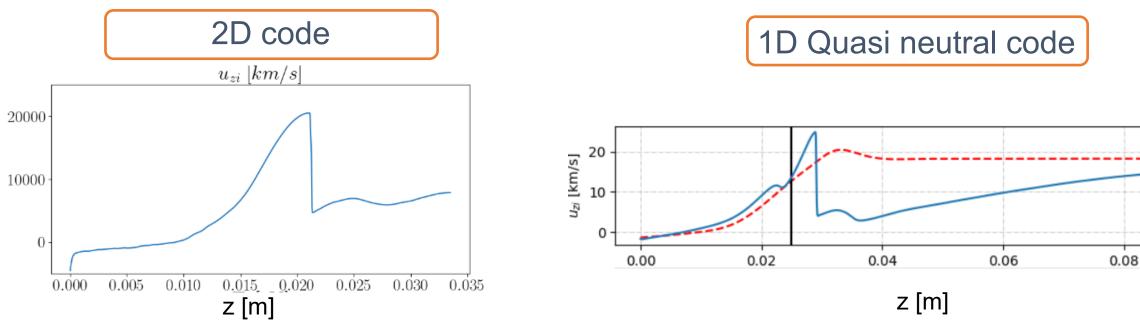
Difficult simulation!


Busek BHT-1500 https://www.busek.com/hall-thrusters



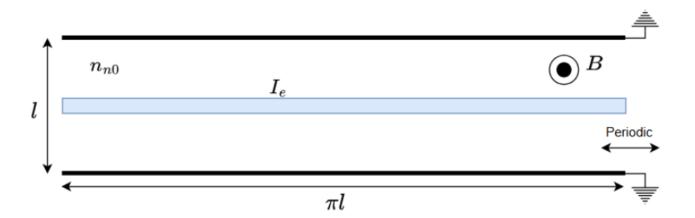
Simulation results

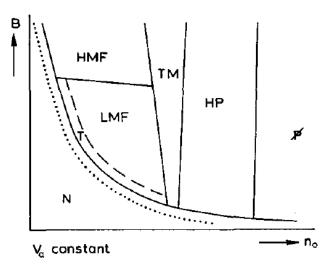
- 500,000 cells
- 52 M steps
- 150 us



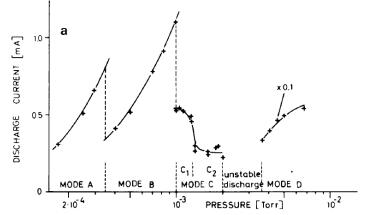
Onset of ITTI in 2D simulations

Onset of Transient Time Instability (axial instability).


- Triggered by low electron mobility
- Appears as a strong shock in the ion axial velocity
- Recovered in quasi neutral code decreasing the anomalous transport

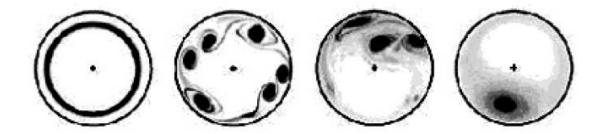


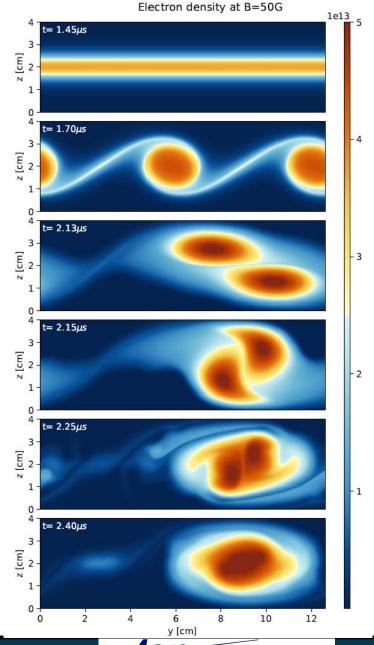
PhD in Aerospace Engineering Doctoral Meetings June 2025, Léganes - Davide Poli


Mode transitions (Penning-like configuration)

- Conceptually simpler than Hall thruster
- Difficult numerical modelling (near vacuum)
- Simulation of modes transition in plasma instabilities
- No similar fluid simulations in the literature

W. Schuurman **(1966)**.
Investigation of a Low-Pressure Penning Discharge

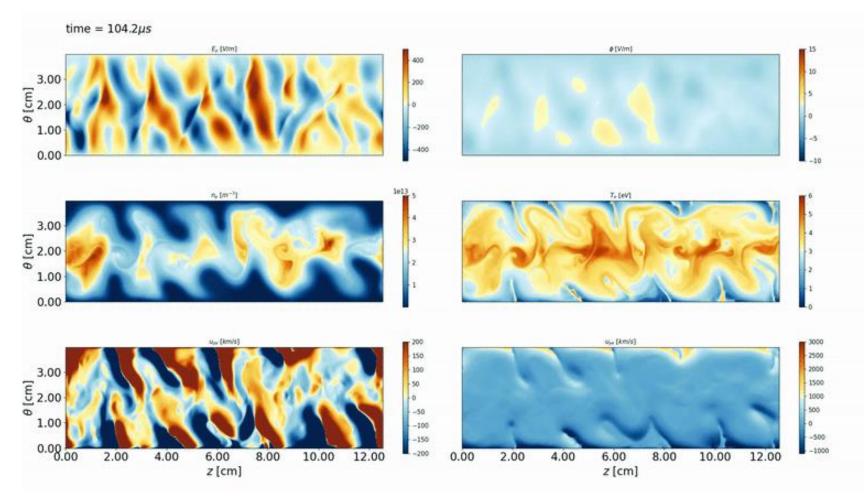

Rohwer, P. et al. Nucl. Instrum. Methods Phys. Res., 211(2/3), 543–546



Mode transitions (low pressure regime)

- Limit of low-pressure regime P=0
- Pure electron plasma
- Onset of Diocotron instability
- Electron vortexes interaction

Hollow electron beam evolution (experiment), Phys. Rev. Lett 93, 215002 (2004).



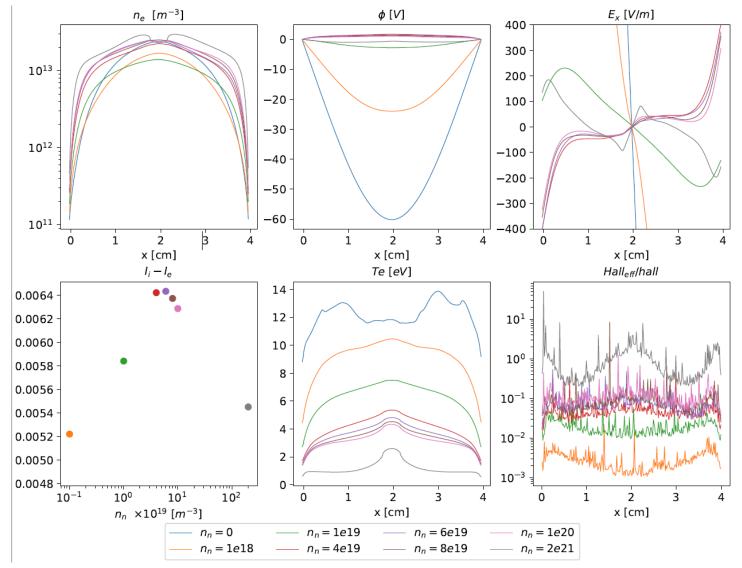
Mode transitions (high pressure regime)

Spokes formation

- MSHI?
- CIV theory?
- Drift Dissipative?

PhD in Aerospace Engineering

Doctoral Meetings June 2025, Léganes - Davide Poli



Mode transitions

- Maximum in the wall current
- Change of plasma potential
- At high pressure collisional transport dominates
- Quasi neutrality at larger pressures

What happens at larger B?

What triggers the spoke transition?

Extra Activities

Completed research stay at Laplace laboratory, Toulouse

- Comparison of in-house 2D code with the one developed at Laplace
- Results presented at IEPC2024

Upgrade of computational resources of EP2 with Matteo Guaita

- Definition of the cluster architecture, purchase and SLURM configuration
- Internal seminar on how to use the cluster and good practices

Next Steps

- SFMC 2025 conference
- IEPC 2025 conference
- 2D code journal
- Conclusion of the PhD

Conferences

- Space Propulsion Conference 2022, Estoril, Portugal D. Poli, E. Bello-Benítez, P. Fajardo, and E. Ahedo, Non stationary fluid modelling of plasma discharge in Hall thrusters + best PhD paper award
- International Conference on Phenomena in Ionized Gases (ICPIG), 9-14 July 2023, Egomond Aan Zee, The Netherlands D. Poli, E. Bello-Benítez, L. Garrigues, P. Fajardo, and E. Ahedo, Fluid vs kinetic simulation of the Penning discharge.
- Internetional Electric Propulsion Conference (IEPC), 23-28 June 2024, Toulouse, France D. Poli, G. Hagelaar, P. Fajardo, and E. Ahedo, Two-dimensional full fluid simulations of ExB plasmas.
- Future participation in Spanish Fluid Mechanic Conference (SFMC), 24-27 June 2024, Málaga, Spain *D. Poli, P. Fajardo, and E. Ahedo , Fluid Modelling of a Hall-effect Plasma Thruster.*
- Future participation Internetional Electric Propulsion Conference (IEPC), 14-19 September 2025, London, Uk D.
 Poli, and E. Ahedo, Towards Full-fluid Modelling of the Axial-azimuthal Hall Thruster Discharge.

Publications

- Published article to Journal of Physics D D. Poli, E. Bello-Benítez, P. Fajardo, and E. Ahedo, Time-dependent axial fluid model of the Hall thruster discharge and its plume. 10.1088/1361-6463/ace2d0
- Published article to PSST D. PoliP. Fajardo, and E. Ahedo, A Non-neutral 1D Fluid Model of Hall Thruster Discharges: full electron inertia and anode sheath reversal 10.1088/1361-6595/ad6500

Thank you! Questions?

email: ep2@uc3m.es

web: ep2.uc3m.es

Twitter: @ep2lab

Research Stay at Laplace, Toulouse

NNC

Physics

- Eqs. in conservative form
- Electron inertia
- Non-neutral effects

$$\nabla^2 \phi = \frac{e}{\epsilon_0} \left(n_e - n_i \right)$$

Numerical

- FVM
- HLLC + 2° order MUSCL
- Strang splitting + SSP-RK3
- Structured mesh + MPI

MAGNIS

Physics

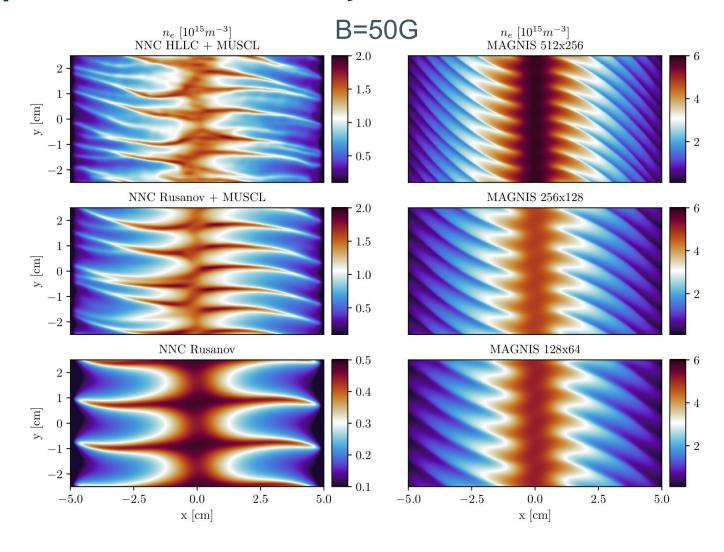
- Non conservative formulation
- Quasi drift-diffusion electrons
- Quasi-neutrality

$$\frac{\partial \mathbf{u}_{i}}{\partial t} + \mathbf{u}_{i} \cdot \nabla \mathbf{u}_{i} = \frac{e}{m_{i}} \left(\nabla \phi - \mathbf{u}_{i} \times \mathbf{B} \right) - \frac{\nabla p_{i}}{m_{i} n_{i}} - \frac{S_{pi}}{n_{i}} \mathbf{u}_{i}$$

$$0 = -\frac{e}{m_{e}} \left(\nabla \phi - \mathbf{u}_{e} \times \mathbf{B} \right) - \frac{\nabla p_{e}}{m_{e} n_{e}} - \left(\nu_{e} + \frac{S_{pe}}{n_{e}} \right) \mathbf{u}_{e} - \beta \frac{\partial \mathbf{u}_{e}}{\partial t}$$

$$\nabla \cdot \left(n_{i} \mathbf{u}_{i} - n_{e} \mathbf{u}_{e} \right) = 0$$

Numerical


- FVM 2° order MUSCL
- Semi-implicit
- Predictor-corrector segregated
- Structured mesh

Research Stay – Semi-periodic Plasma Layer

- Numerical diffusion changes dramatically the instability
- MAGNIS and NNC differences are not due to numerical diffusion
- Lack of electron inertia in MAGNIS could be crucial

IEPC 2024- D. Poli, G. Hagelaar, P. Fajardo, and E. Ahedo, Two-dimensional full fluid simulations of ExB plasmas.

